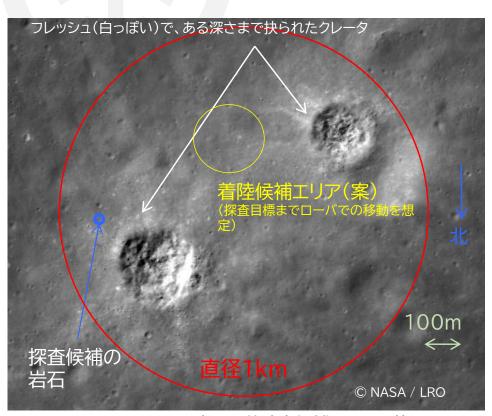


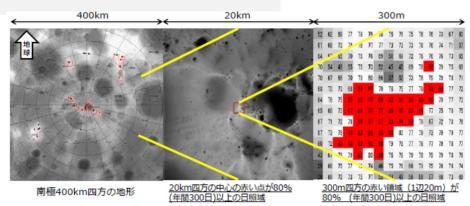
SLIM Project 概要説明資料



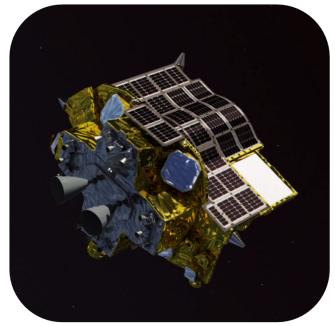
▶目次

ピンポイント着陸技術の必要性		3р
SLIMミッションの目的		5p
SLIMミッションの成功基準(サクセスクライテリア)		6p
軽量な探査機を実現する搭載機器	_	7-12p
SLIMの打ち上げ手段と軌道	_	13p
着陸シーケンス	_	14p
画像照合航法	_	15-16p
月面活動ミッション概要		17p
着陸目標点の選定		18p
傾斜地に適した「二段階着陸」方式	_	19p
探査機の開発経緯	_	20p
射場作業状況		21p
月惑星探査の中での位置づけ	_	22p
広報関係の参考情報		23p
関係する大学・機関、研究開発体制	_	24p
略語集		25p

▶ ピンポイント着陸技術の必要性



サイエンスとして興味深い着陸点<u>候補</u>エリアの状況 (SLIM着陸点とは異なる)


月周回衛星「かぐや」「LRO」が高分解能な月面 観測データを大量にもたらした結果、現在の月 探査ミッションは、「あのクレータの隣のあの岩 石」といった粒度で議論されるようになってい ます。このような岩石の"その場観測(組成分 析など)"を実施するためには、近傍の平坦地 を選んで探査機を着陸させる必要があります。 左の図はSLIMの着陸点とは異なりますがサ イエンスとして興味深い着陸点の例になります。 この例では月面ローバを使用できると仮定し て検討していますが、その場合でも、傾斜地や 凸凹の厳しい地形の走破は難易度が高いため、 ピンポイントで着陸することが重要となります。

▶ ピンポイント着陸技術の必要性

月の極域における、日照時間の長いエリア

小型月着陸実証機 SLIM(スリム)

また、極域で水資源探査を行う場合も、日照率の高さなど、着陸して持続的な探査を行うために有利な場所は、非常に狭い領域に限定されると言われています。一方で、月のような有重力天体にピンポイント着陸した例は、世界的にもこれまで見当たりません。そのため、「小型の月着陸機により、ピンポイント着陸の技術実証を行うミッション」を実施することとなりました。これが、JAXA / 宇宙科学研究所が推進する<u>SLIM</u> Project です。

【参考】

- 従来の代表的な月着陸機の着陸精度は、数km ~ 10数km
- 「はやぶさ」、「はやぶさ2」は精密なタッチダウンを実現しているが、小惑星の重力は月や地球と比べて数桁小さいため、ダイナミクスが全く異なる(これらはゆっくり接近し、必要があれば再上昇することも可能。逆にSLIMではゆっくり慎重に接近することはできず、また、着陸のやり直しもきかない)

▶ SLIMミッションの目的

SLIM(Smart Lander for investigating Moon)は、以下の2つの目的を達成することで、将来の月惑星探査に貢献することを目指したJAXAプロジェクトです。

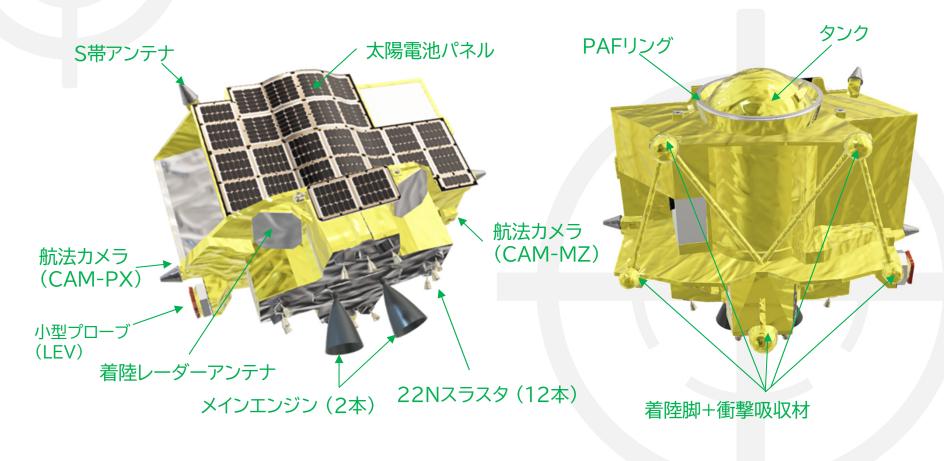
【目的A】月への高精度着陸技術の実証を目指す

- 従来の月着陸精度である数km~10数kmに対して100mオーダーを目指す
- キーとなる技術は、「<mark>画像照合航法</mark>」および「**自律的な航法誘導制**御」

【目的B】<u>軽量な月惑星探査機システムを実現し、月惑星探査の</u> <u>高頻度化に貢献する</u>

- 小型・軽量で高性能な化学推進システムの実現
- 宇宙機一般で中核をなす計算機や電源システムの軽量化

▶ SLIMミッションの成功基準(サクセスクライテリア)


前掲の目的に対応して、成功基準(サクセスクライテリア)を以下のように定めています。

基準	内容
ミニマムサクセス	小型軽量な探査機による月面着陸を実施する。 それによって、以下の2項目を達成する。 ・ 高精度着陸に必須の光学照合航法を、実際の月着陸降下を実施することで検証する ・ 軽量探査機システムを開発し、軌道上動作確認を行う
フル サクセス	精度100m以内の高精度着陸が達成されること。 具体的には、高精度着陸航法系が正常動作し、誘導則に適切にフィードバックされ、着陸後の データの解析により着陸達成に至る探査機の正常動作と着陸精度達成が確認されること。
エクストラサクセス	高精度着陸に関する技術データ伝送後も、日没までの一定期間、月面における活動を継続し、 将来の本格的な月惑星表面探査を見据え、月面で活動するミッションを実施する。

▶ SLIM探査機外観

- 質量:200kg(推薬なし) / 約700-730kg(打ち上げ時)
- 高さ:約2.4m、縦:約1.7m、横:約2.7m

軽量化のため燃料・酸化剤一体型タンクを採用しており、これが探査機主構造を兼ねています

株式会社IHIエアロスペース

22N スラスター(THR)

二液式20N級の小推力スラスタです。12基から構成され、噴射するスラスタの組み合わせと様々な噴射パターンが生み出す並進力・回転力により、姿勢制御、軌道変換、ピンポイント着陸を支えます。

メインエンジン(OME)

三菱重工業株式会社 京セラ株式会社

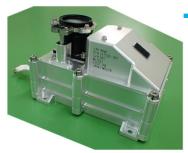
軌道制御や月面着陸時の速度制御に使用する二液式500N級スラスタです。国産技術であるセラミック燃焼器を使用し、世界的にも例のない「幅広い推力範囲とパルス作動」を実現しています。高い性能から推進系全体の質量低減にも寄与しています。

三菱重工業株式会社 中興化成工業株式会社

タンク

OME・THRで使用する燃料・酸化剤を貯蔵するタンクです。内部に金属製共通隔壁を具備しており、燃料・酸化剤タンクを一体化しています。SLIMの主構体の役割も担っており、SLIMの構造質量低減に大きく寄与しております。また、酸化剤側には新規に開発した軽量なPTFEによるダイアフラムが使用されています。

低 統合化制御系


着陸レーダー

三菱電機株式会社 三菱電機 ディフェンス&スペーステクノロジーズ ##ゴ会社

垂直降下フェーズで月面に対する高度・速度を測定するためのセンサーです。マイクロ波のパルスを月面に照射し、往復時間とドップラー周波数を測定します。パルス幅の異なる複数のモードを備えており、高度数km~数10mの範囲で使用可能です。

レーザーレンジファインダー (LRF)

三菱電機株式会社 明星雷気株式会社

着陸直前に対月面の高度を測定するための光波センサーです。変調をかけたレーザ光の月面からの反射光を受信し、その位相から距離を算出します。SMUとの機能分担により、小型軽量化を図っているのが特徴です。

明星電気株式会社

航法カメラ

着陸フェーズにおいて月面を撮像するための小型軽量のカメラです。画像照合航法に使う非圧縮画像とダウンリンク用の圧縮画像を同時に出力することができます。2台が異なる向きで搭載されており、動力降下・垂直降下各フェーズでそれぞれ使用します。

統合化制御系

三菱電機株式会社

統合化計算機(SMU)

SLIMを制御するための全ての演 算機能を担う統合化計算機です。通 常の衛星・探査機では別々の装置で 行われるデータ処理系と航法誘導 制御系の演算が、SMU内の単一の MPUで処理されるのが特徴です。 自己位置推定のための画像処理も、 SMU内のFPGA上で実施されます。

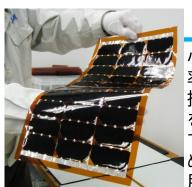

三菱電機株式会社

Sバンドトランスポンダ(STRX)

SLIMが地上局と通信するため のSバンドの送受信機です。 FPGAによるデジタル化や高速 D/A変換による送信信号の直接 出力などの先進的な設計を採用 し、小型化・軽量化を達成してい ます。

古河電池株式会社 株式会社テクノソルバ 株式会社三協製作所

SUSラミネート電池(LICM)


小型軽量化のために、一般的な ラミネート電池に使われるアルミ ではなく、SUSを外装に用いた SUSラミネート電池セルです。セ ル2式をCFRPの板で拘束し、打 ち上げ時の振動・衝撃や真空中 での充放電に耐えられるように しています。

電力制御分配器(IPCU)

三菱電機株式会社 三菱電機 ディフェンス&スペーステクノロジーズ

従来は個別のコンポで担っていた、 バッテリ充放電機能、太陽電池発生 電力のレギュレーション、電力分配機 能の他、スラスタバルブ駆動制御機 能、ヒータ制御機能を集約した新規 開発品の電力制御器です。これらを デジタル制御で行うことにより従来 のアナログ制御機器に比べて大幅な 高機能化・軽量化を実現しています。

シャープ株式会社

薄膜太陽電池

小型軽量化のために、軽量・高効率な薄膜3接合太陽電池シートを搭載しています。フレキシブル性を生かして、一部曲面にも搭載しています。また、工程簡略化のため、ベルクロによる取り付けを採用しました。

株式会社コイワイ 網目状の 日本積層造形株式会社 株式会社テクノソルバ います。 有限会社オービタルエンジニアリング

衝擊吸収材(ABS)

SLIMの5つの接地点についている接地時の衝撃を吸収するため機構です。3Dプリンターの積層造形により、効率よく衝撃を吸収できるように計算されたアルミニウム製の網目状の構造が作り込まれています。

明星電気株式会社(MBC)

分光カメラ(MBC) 小型プローブ(LEV)、リフレクタ(LRA)

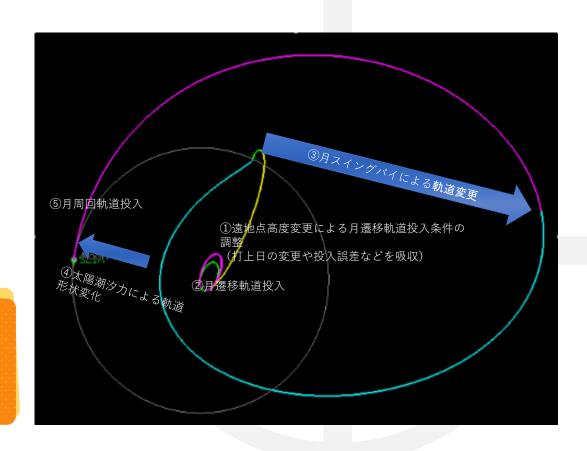
着陸後に周囲のカンラン石の組成を調査するのが分光カメラ(MBC)です。これにより月誕生のナゾの解明に繋がる手がかりを得たいと考えています。SLIMには、このMBCの他に、着陸直前に分離してホッピング移動しながら写真撮影をする小型プローブ(LEV)や米国NASAから提供されたリフレクタ(LRA)も搭載しています。

▶ SLIMの打ち上げ手段と軌道

打上手段は「H-IIA相乗り」であり、同じ宇宙科学研究所で開発中の科学衛星「X線分光撮像衛星XRISM」と一緒に打ち上げられる計画です。打上げは2023年度8月以降となっています。

SLIMは長楕円軌道に分離投入後、自身の推進系で月へ向かって軌道変更を行います。そのため、消費推薬量の少ない軌道設計を採用しています。その分、数ヶ月程度の時間をかけて月に到達することになります。

·月周回軌道到着

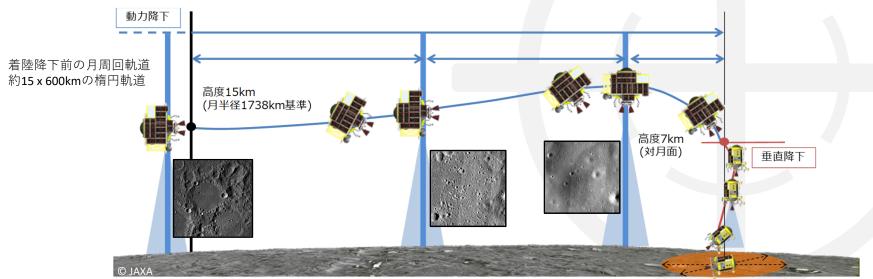

: 打上げ後、3-4ヶ月

·月周回期間

:約1ヶ月

·月着陸降下

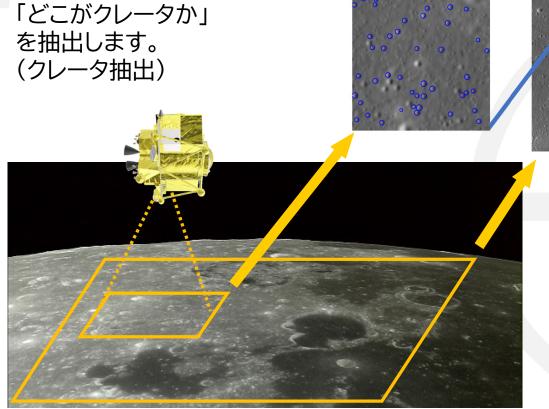
: 打上げ後、4-6ヶ月



▶ 着陸シーケンス

SLIMの着陸シーケンスは以下の通り実施します。

- 1. 月周回軌道から着陸降下を開始、航法カメラによる画像航法を行って高精度に自身の位置を 推定しながら、自律的な航法誘導制御により、月面上の目標地点に接近します。
- 2. 目標地点上空からは、着陸レーダによる高度・地面相対速度の精密な計測も開始し、航法誘導に反映します。
- 3. 着陸地点上空では画像ベースの障害物検出・回避を自律的に行い、危険な岩などを避けて着陸します。

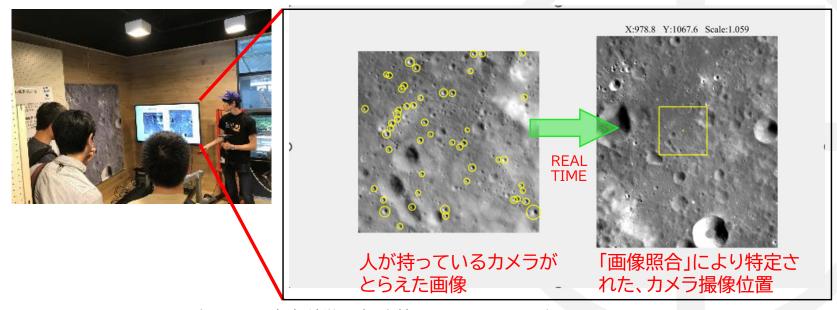


動力降下開始後の着陸シーケンス

▶画像照合航法

SLIMは「画像照合航法」により自己位置を測定し、修正することでピンポイントな着陸を実現します。

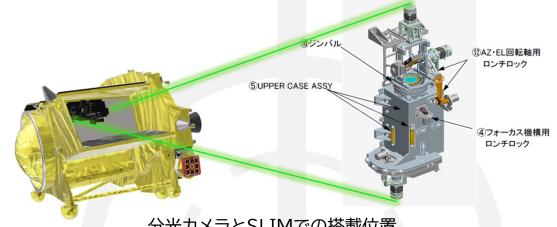
1. 撮影した画像を処理し、


2. ありえる探査機位置を包含する広い領域の地図から、抽出されたクレータパターンと一致する場所を特定します。 (クレータマッチング)

▶画像照合航法

「画像照合航法」実現にあたっては、処理時間が重要な観点です。

現状の宇宙用CPUは、地上用と比べておよそ1/100程度の能力しかありません。そこで、宇宙用FPGA上でも数秒の処理時間で済む画像処理アルゴリズムを長年開発することで、実現の目処を得ています。


2018年 JAXA宇宙科学研究所 特別公開におけるデモンストレーション

▶ 月面活動ミッション概要

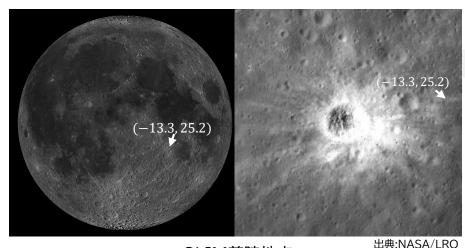
着陸成功後は、月起源解明を狙い「分光カメラ」により、月マントル由来と考えられる岩石の組成 分析を行う予定です。

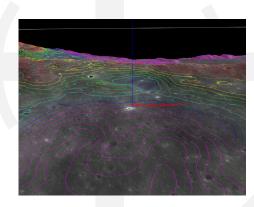
そのためには、狙ったクレータ近傍への着陸 が必要であり、ピンポイント着陸により初め て可能となる観測になります。この観測が成 功基準のエクストラサクセスの1つとなって います。

分光カメラとSLIMでの搭載位置

また、以下のような特徴を有する小型プローブを 搭載しています

- 着陸後のミッション状況観測
- 着陸シーンの外部からの撮像(静止画)
- 独立した通信系で地球との直接通信


小型プローブ放出(左)と月面上の小型プローブのイメージ(右)

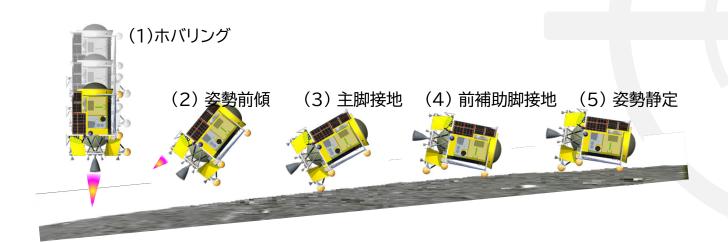

▶着陸目標地点の選定

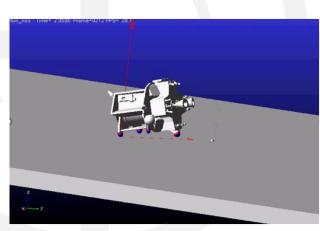
分光カメラの観測に適し、かつ着陸技術実証に適した地点として、「神酒の海」付近のSHIOLIクレータ近傍の地点を、着陸目標地点として選定しました。

- ▶ このように、「分光カメラ」が観測して新しい成果が得られる対象は、月面上のごく限られた領域にしか分布していません。そのため、その観測は「ピンポイント着陸技術」があって初めて行えるものとなります。
- ▶ これにより、クレーター近傍、つまり「斜面」への着陸が必要となりました。

SLIM着陸地点 (左:月全体における位置、右:拡大図)

"神酒の海"と呼ばれる低緯度地域に存在。斜度が 15deg程度以下で概ね一定の地点


(南緯: 13.3degS/東経: 25.2degE)



▶ 傾斜地に適した「二段階着陸」方式

着陸目標地点は前述の通りクレータ近傍に位置し、そのため付近一帯は斜度15[deg]程度の傾斜地となっています。従って、SLIMのような小型軽量な機体で、このような傾斜地に安全に着陸することが重要です。

科学・探査目的の高度化に伴い、今後はこのような地形への着陸が一般に求められるようになると考えています。着陸シミュレーション等による検討を重ねた結果、SLIM規模の機体の場合、始めに主脚で一度接地してから、機体を前方に回転させて静定する「2段階着陸方式」が耐転倒性に優れることが明らかになっています。

SLIM着陸シミュレーション

▶ 探査機の開発経緯

SLIMプロジェクト開発経緯概略は以下の通りです。

2003年頃のSELENE-B計画を源流として、今日に至るまで検討が続けられています。

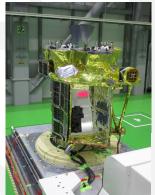
2002年頃 SELENE-B計画

2012年 SELENE-B計画をスリム化 SLIM計画を提案

2016年 システム定義審査(SDR)


2016年 プロジェクト移行審査

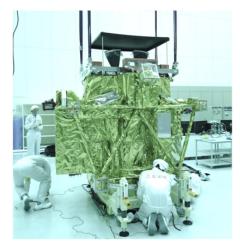
2018年 基本設計審查(PDR)


2019年 詳細設計審査(CDR)

2023年 開発完了審査(PQR)

フライトモデルのシステム試験

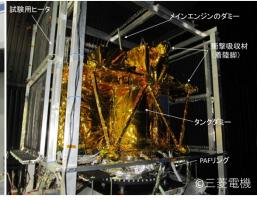
©三菱電機



▶射場作業状況

▶ JAXA月惑星探査の中での位置づけ

「SLIM」は技術実証機であり、ピンポイント着陸を初めとする技術が、火星衛星探査計画 (MMX)や、月極域ミッション等に継承されていくことになります。



▶広報関係の参考情報

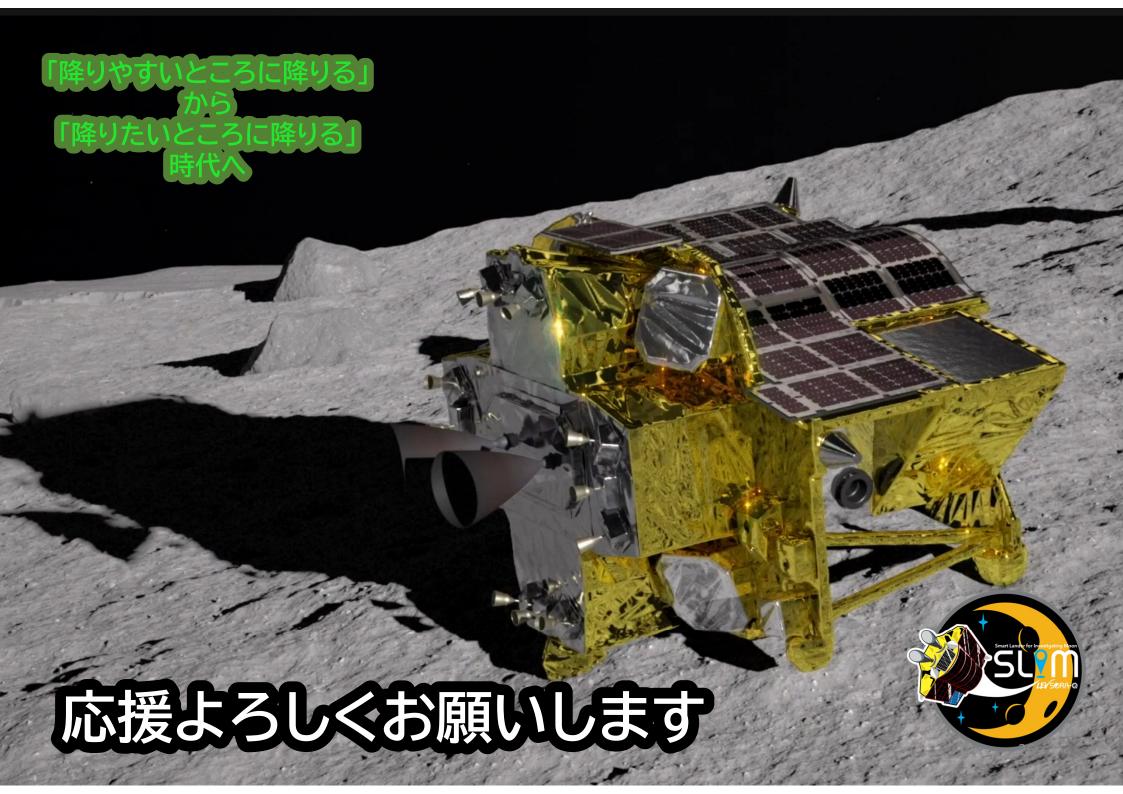
|熱真空、機械環境試験に使用したモデル(MTM、TTM)を、展示用モデルとして整備し、相模原キャンパス探査交流棟に展示中!

SLIMプロジェクトホームページ https://www.isas.jaxa.jp/home/slim/SLIM/index.html

Twitterにて最新の状況や開発にかかわる 裏話をつぶやき中 @SLIM_JAXA

▶ 関係する大学・機関、研究開発体制

JAXAをはじめとした、多数の大学と機関が参加し、これまでにSLIM実現のための様々な技術の研究・開発に取り組んできました。



▶略語集

略称	名称(英語)	名称(日本語)
AANT	RAV Altimeter ANTenna	着陸レーダ高度測定用アンテナ
ADM	Apolune Descending Maneuver	遠月点降下マヌーバ
BAT	BATtery	バッテリ(二次電池セルモジュール)
CAM	navigation CAMera	航法カメラ
COM	COMmunication system	通信系
CSS	Coarse Sun Sensor	粗太陽センサ
DSN	Deep Space Network	深宇宙用追跡ネットワーク
EPS	Electrical Power System	電源系
FLT	FiLTer	フィルタ
GFD	Gas Fill and Drain valve	ガス系注排弁
GN	Ground Network	追跡ネットワーク
IMU	Inertial Messurement Unit	慣性基準装置
INT	INTegration hardware	計装系
IPCU	Integrated Power Control Unit	電力制御分配器
ISC	Integrated Spacecraft Control system	統合化制御系
LEV	Lunar Excursion Vehicle	小型プローブ
LOI	Lunar Orbit Insertion	月周回軌道投入
LRA	Laser Retro-reflector Array	リフレクタ(NASA JPL)
LRF	Laser Range Finder	レーザレンジファインダ
LRO	Lunar Reconnaissance Orbiter	ルナー・リコネサンス・オービター
MBC	Multi-Band Camera	分光カメラ
NPV	Non-Pyro valve	ノンパイロ弁
OME	Orbit Maneuvering Engine	メインスラスタ
PAM	Period Adjustment Maneuver	周期調整マヌーバ
PD	Powered Descent	動力降下
PDM	Perilune Descending Maneuver	近月点降下マヌーバ
PFD	Propellant Fill and Drain valve	液系注排弁

略称	名称(英語)	名称(日本語)
PLD	PayLoaD mission system	月面活動系
PT	Pressure Transducer	圧力センサ
RAV	Radio Altimeter and Velocity meter	着陸レーダ
RCS	Reaction Control System	推進系
REU	Rav Electorical Unit	着陸レーダ電気ユニット
SABS	Shock ABSorber	衝撃吸収材
SANT	S-band ANTenna	Sバンドアンテナ
SAP	Solar Array Panel	太陽電池パネル(薄膜太陽電池シート)
SDIP	S-band DIPlexer	Sバンドダイプレクサ
SHYB	S-band HYBrid	Sバンドハイブリッド
SLIM	Smart Lander for Investigating Moon	小型月着陸実証機SLIM
SMU	System Management Unit	統合化計算機
SSW	S-band SWitch	Sバンドスイッチ
STR	STRucture system	構造系
STRX	S-band TRansponder	Sバンドトランスポンダ
STT	STar Tracker	スタートラッカ
SWB	lunar SWing-By	月スイングバイ
TCS	Thermal Control System	熱制御系
THR	THRuster	補助スラスタ
TLI	Trans-Lunar Injection	月遷移軌道投入
TNK	fuel TaNK	推進薬タンク
TOR	Trim ORifice	トリムオリフィス
UDSC	Usuda Deep Space Center	臼田局
USC	Uchinoura Space Center	内之浦局
VANT	RAV Velocity meter ANTenna	着陸レーダ速度測定用アンテナ
XRISM	X-Ray Imaging and Spectroscopy Mission	X線分光撮像衛星

