

小惑星探査機「はやぶさ2」の リュウグウ近傍における運用状況

2018年8月2日

JAXA はやぶさ2プロジェクト

「はやぶさ2」に関連して、

・ミッションの現状 ・サイエンス(LIDAR、NIRS3、形状モデル) ・ミッションスケジュール ・共同研究

について紹介する。

注)LIDAR=レーザ高度計、NIRS3=近赤外分光計

目次

- 0.「はやぶさ2」概要・ミッションの流れ概要
- 1. プロジェクトの現状と全体スケジュール
- 2. レーザ高度計の初期観測結果
- 3. 近赤外分光計の初期観測結果
- 4. リュウグウの形状モデル
- 5. ミッションスケジュール

6. 共同研究

7. 今後の予定

<u>目的</u>

「はやぶさ」が探査したS型小惑星イトカワよりも始原的なタイプであるC 型小惑星リュウグウの探査及びサンプルリターンを行い、原始太陽系に おける鉱物・水・有機物の相互作用の解明することで、地球・海・生命の 起源と進化に迫るとともに、「はやぶさ」で実証した深宇宙往復探査技術 を維持・発展させて、本分野で世界を牽引する。

期待される成果と効果

- ・水や有機物に富むC型小惑星の探査により、地球・海・生命の原材料 間の相互作用と進化を解明し、太陽系科学を発展させる。
- ・衝突装置によって生成されるクレーター付近からのサンプル採取という 新たな挑戦も行うことで、日本がこの分野において、さらに世界をリード する。
- ・太陽系天体往復探査の安定した技術を確立する。

<u>特色:</u>

- ・世界初のC型微小地球接近小惑星のサンプルリターンである。
- ・小惑星にランデブーしながら衝突装置を衝突させて、その前後を観測 するという世界初の試みを行う。
- ・「はやぶさ」の探査成果と合わせることで、太陽系内の物質分布や起源 と進化過程について、より深く知ることができる。

<u>国際的位置づけ:</u>

- ・日本が先頭に立った始原天体探査の分野で、C型小惑星という新たな 地点へ到達させる。
- ・「はやぶさ」探査機によって得た独自性と優位性を発揮し、日本の惑星 科学及び太陽系探査技術の進展を図るとともに、始原天体探査のフロ ンティアを拓く。
- ・NASAにおいても、小惑星サンプルリターンミッションOSIRIS-REx (打 上げ:平成28年、小惑星到着:平成30年、地球帰還:平成35年)が実施 されており、サンプルの交換が取り決められていることに加えて科学者 の相互交流が行われており、両者の成果を比較・検証することによる 科学的成果も期待されている。

(イラスト 池下章裕氏)

質量	約 609kg			
打上げ	平成26年(2014年)12月3日			
軌道	小惑星往復			
小惑星到着	平成30年(2018年)			
地球帰還	平成32年(2020年)			
小惑星滞在期	間 約18ヶ月			
探查対象天体	:地球接近小惑星 Ryugu(リュウグウ)			

主要搭載機器

けわごさ? 主亜結テ

サンプリング機構、地球帰還カプセル、光学カメラ、レーザー測距 計、科学観測機器(近赤外、中間赤外)、衝突装置、小型ローバ

ミッションの流れ概要

1. プロジェクトの現状と 全体スケジュール

現状:

- BOX-C運用は、7月17日から7月25日にかけて行われた。7月20日 からの約1日間は最低高度(約6km)付近に滞在した。
- 中高度運用は7月31日から8月2日にかけて行われている。8月1日
 に最低高度約5kmに到達した。
- 8月5日からは重力測定のための降下運用を行う。

全体スケジュール:

2. レーザ高度計の初期観測結果 LIDARによる形状測定

クレジット: JAXA, 東京大, 高 知大, 立教大, 名古屋大, 千葉 工大, 明治大, 会津大, 産総研

(上)6月30日から7月25日までの1ヶ月たらずの間でレーザ高度計データから得られた リュウグウ全体の形。画像データから作成された形状モデルとほぼ一致しており、クレ ーターや巨石も地形として読み取ることができる。「はやぶさ2」は通常は赤道上空に あるため、赤道付近の観測が多い。

クレジット:国立天文台,JAXA,千葉エ大,会津大,日本大,大阪大

クレジット:国立天文台, JAXA,千葉工大,会津大,日本大,大阪大

(上) クレーター仮番号6. 直径 約210 m , 深さ約30 m. 深さ÷直径の比率 約 0.14. クレーターの縁の高さ5 m以下.

(下) クレーター仮番号12. 直径 約110 m , 深さ約17 m. 深さ÷直径の比率 約 0.16. クレーターの縁の高さ約7 m.

クレジット: JAXA, 東京大, 高知 大, 立教大, 名古屋大, 千葉エ 大, 明治大, 会津大, 産総研

(左上) と (左下) の図中の 測定点がばらついているの は誤差ではなく、探査機の 位置と姿勢によってクレータ ーを横断する位置が変わる ため.

同じように合計7個のクレーターについて 形状を測定済み。

こうした測定から、

(i) 深さ÷直径の比率は0.1~0.2程度である
(ii) 比較的明瞭(高さ5m程度?)な縁を持つクレータが存在している
ことが判ってきた。

(i) に関して、この深さ÷直径の比率はこ れまでに観測されたことがある小惑星・彗 星の単純クレータと良く一致している。 一方で (ii) はイトカワには見つかっていな い特徴である(ただし、小惑星・彗星におけ る初めての発見でもない)。

クレジット:国立天文台, JAXA, 千葉工大, 会津大, 日本大, 大阪大

装置概要

- 水分を含む鉱物の存否とその分布を調べる観測装置
- 波長域1.8~3.2µmの反射スペクトルを測定し、3µm付近で顕著な 水酸基や水分子の赤外吸収を検出する

装置の状態と観測実績

- 装置は正常に動作しており、性能に問題はない
- 6月21日の観測で初めてリュウグウを捉えることに成功し、その後 継続して良質なデータを取得している
- 6月27日の到着以降、高度約20km(Box-A)で4自転分、高度12 ~7km(Box-C)で2自転分の観測を実施
- Box-AとBox-Cでスキャン観測をそれぞれ1自転分ずつ実施
- 合計約54,000点のスペクトルデータを取得済み

観測被覆率

- 探査機の姿勢制御とリュウグウの 自転を利用したスキャンを実施
- 全表面の90%以上を観測すること に成功

スキャン観測のイメージ

7/11 Box-A観測のリュウグウ表面における 場所毎の観測頻度.灰色は未観測領域 クレジット:会津大, JAXA

現時点の主な結果

- 3µm付近の水の吸収は今のところ検出されていない
- リュウグウ表面は予想よりも水が枯渇しているようである
- 科学的な解釈としては、 (1)前身となる母天体で水分を含む鉱物が生成されなかった (2) 二次的な加熱による脱水を経験した の2通りが考えられる
- ただし、観測できていない極域や地下に水が存在する可能性は 残っており、今後の観測でさらに詳しく調査する予定である

4. リュウグウの形状モデル

- 探査機と小惑星の位置関係と、レーザ高度 計の測距値から大きさを推定
- 二つの独立した方法を使用
 - 相互補完
 - 結果を比較することで結果の妥当性を 確認
- 画像で見えている特徴をより定量的に把握 できるようになった
- 着陸地点決定のための工学的な基礎情報
- リュウグウの成り立ちを考える上での理学的な基礎情報

右図)形状モデルより作成したCG 経度0度方向からの視点 リュウグウの北極が上

SfMIこよるモデル クレジット:会津大, JAXA

SPCによるモデル クレジット:神戸大, JAXA

4. リュウグウの形状モデル

- 形状推定の方法
 - 多視点からの画像を用いた物体の三次元形状推定(いわゆるステレオ視)
- Structure-from-Motion (SfM) 法
 - 会津大学の解析グループで使用
 - ほぼ自動で迅速な処理が可能
 - 近年一般化し、多くのソフトが登場
- Stereophotoclinometry (SPC) 法
 - 神戸大学の解析グループで使用
 - ステレオ視に加え、地形の凹凸と照明条件の兼ね合わせで生じる 陰影情報も利用
 - 月惑星探査データの解析用に米国で開発
 - 「はやぶさ」による小惑星イトカワの形状推定を始め、多数の探査ミ ッションで使用
- これまでに主に距離20kmから撮影した画像を用いた形状モデルの作成を完了し、現在より解像度の高い画像を用いた解析を実施中

4. リュウグウの形状モデル

諸元 平均半径:約450 m 自転周期:約7.63時間 自転軸方向: 黄経λ:約179度 (動画) SfMによるモデル SPCによるモデル 黄緯β:約-87度 クレジット:神戸大, JAXA クレジット:会津大, JAXA

リュウグウの北極が上(公開されている画像と逆向き)

リュウグウの南北

- 小惑星の南北は自転の向
 きで決まる
- 右ねじの進む向き(反時計 回り)になる方向が北極
- •地球とは逆向きに自転して いる
- -イトカワもリュウグウと同じ 逆向き回転だった
- 地球の北方向は太陽系全体の南北の基準となっている
- これまでの発表資料中のリュウグウの画像の多くは地球(太陽系全体)の北を上にしていた

4. リュウグウの形状モデル

リュウグウの四面図(リュウグウの北極が上)

SfMによるモデル(クレジット:会津大, JAXA)

SPCによるモデル(クレジット:神戸大, JAXA)

4. リュウグウの形状モデル

リュウグウの段彩陰影地形図

SfMによるモデルから作成 (クレジット: JAXA, 会津大)

SPCによるモデルから作成 (クレジット: JAXA, 神戸大)₁₉

5. ミッションスケジュール

<u>直近の運用計画</u>

- 通常は高度約20kmのホームポジションから観測
 = BOX-A
- 高度を下げる運用

済 ➤ BOX-C運用 :7月17-25日、最低高度約6km(7/20~21 進行中)

- ▶ 中高度降下運用:7月31日-8月2日、最低高度約5km(8/1)
 ▶ 重力計測降下運用:8月5-7日、最低高度約1km(8/7)
- ツアー観測
 - ▶ BOX-B運用:8月下旬

※BOXについては参考資料を参照

5. ミッションスケジュール BOX-Cでの画像

高度約6kmから撮影したリュウグウ。2018年7月20日、16時頃(日本時間)に望遠の光 学航法カメラ(ONC-T)によって撮影。 画像クレジット: JAXA, 東京大, 高知大, 立教大, 名古屋大, 千葉工大, 明治大, 会津大, 産総研

※時刻は日本時間。運用計画や運用状況によって変更もありうる。

5. ミッションスケジュール

中高度降下運用概要

No	フェーズ	概要	高度
1	ホームポジション から降下	ホームポジションから降下。タッチダウンと同じ 降下手法(GCP-NAV)を用いる。NIRS3はON。	20 ~ 7 km
2	直下点撮像 (降下中)	ONC-T、TIRの観測開始。直下点の撮像を行う。	7 ~ 5 km
3	直下点撮像 (ホバリング)	高度5kmを維持しつつ、直下点の撮像を行う。	5 km
4	直下点撮像 (上昇中)	上昇のための加速を行い、その後も7kmまで 上昇しながら直下点の観測を行う。	5 ~ 7 km
5	ホームポジション 復帰	上昇しつつデータのダウンリンクを開始する。	7 ~ 20 km

※GCP-NAVについては次ページを参照

5. ミッションスケジュール

中高度降下運用とBOX-C運用の比較

フェーズ	中高度降下運用	BOX-C運用
降下時間	半日程度	数日かけて降下
降下中の位置制御	GCP-NAV	HPNAV
観測中の位置制御	GCP-NAV HPNAVによるホバリング	事前ム۷によるフリーモーション
観測時間	8時間	10時間程度
観測姿勢	+Z地球指向	スキャン運用を実施
運用コンセプト	高度を下げ、狙った地点を 狙ったアングルで観測する。 (着陸と同じ方法で精密誘導し ながら狙った地点に降りる)	ホバリングを維持しながら、高 度を下げる。(ホバリングと同じ 技術の延長でラフに高度を下 げる)

注:GCP-NAV (Ground Control Point Navigation)

→小惑星表面の特徴点を観測することで、探査機の位置・速度を求める手法

HPNAV (Home Position Navigation)

→小惑星の画像中心方向および探査機姿勢データより探査機の位置・速度を求める手法

5. ミッションスケジュール

中高度降下運用において撮影されたリュウグウ

広角の光学航法カメラ(ONC-W1)による。時刻は日本時間。 画像クレジット: JAXA

5. ミッションスケジュール

※時刻は日本時間。運用計画や運用状況によって変更もありうる。

HAYABUSA2

U. ヘノノ コノ ハ / ノ エ _ //	ッションスケジュー	ル
------------------------	-----------	---

年	月日	事項	状況
2018	1月10日	第3期イオンエンジン運転開始	済み
	6月 3日	イオンエンジン運転終了	済み
	6月 3日	小惑星接近誘導開始(距離3100km)	済み
	6月27日	小惑星到着(高度20km)	済み
	7月末	中高度降下運用1(高度5km)	実施中
	8月	重力計測降下運用(高度1km)	予定
	8月下旬	着陸地点決定	予定
	9月~10月	タッチダウン運用スロット1	予定
	9月~10月	ローバ投下運用スロット1	予定
	11月~12月	合運用(通信不可の期間)	予定
2019	1月	中高度降下運用2(高度5km)	予定
	2月	タッチダウン運用スロット2	予定
	3月~4月	クレーター生成運用	予定
	4月~5月	タッチダウン運用スロット3	予定
	7月	ローバ投下運用スロット2	予定
	8月~11月	小惑星近傍滞在	予定
	11月~12月	小惑星出発	予定

このスケジュールは、リュウグウ到着後様々な要因で変更される可能性がある。 状況が「済み」以外は、確定しているわけではないことに注意。

6. 共同研究

◆宇宙探査イノベーションハブとの共同研究

 JAXAの宇宙探査イノベーションハブでは、将来の宇宙探査に 必要なキー技術の1つとして、vSLAM研究について公募を行い 、下記のテーマの研究を推進している。

第3回研究提案(2017年3月公募、2017年10/11月より研究開始) 「探査ロボットのための画像による自己位置推定と環境地図作成 技術の研究」

- 【1】株式会社アイヴィス,株式会社ビュープラス
- ◆ 超高感度マルチカメラや深層学習を利用した高付加価値 vSLAM技術の研究開発

【2】株式会社コンセプト、株式会社モルフォ

◆ テクスチャレスシーンのためのロバストなVisual SLAMの研究

6. 共同研究

vSLAMについて

- 近年、ロボット(ドローン等)分野で、自己位置推定と環境地図作 成を同時に行うSLAM(Simultaneous Localization and Mapping)技術の研究開発が進んでいる
- カメラ画像を利用する場合、Visual SLAM(vSLAM)と呼ばれる。
 カメラが移動する、あるいは環境(物体)が移動する際に撮影できる連続画像を用いたSfM(Structure from Motion)などが主な画像計測技術となる

■ 屋内移動ロボットのvSLAM処理の例

室内の移動ロボットの様子

(https://www.morphoinc.com/technology/vslam より

- 宇宙探査イノベーションハブの研究で得られたvSLAM技術を、 「はやぶさ2」のタッチダウン運用に貢献する。
 特に、研究課題としているテクスチャレス部分(特徴のあまりない場所)の計測技術を適用し、「はやぶさ2」が小惑星リュウグウに接近した際、砂地などの濃淡変化がない地域があった場合でも、より正確な計測を行うことが期待できる。
- 株式会社アイヴィス社、株式会社コンセプト社の協力を得て、 3次元情報の表示ツールやvSLAMデモ装置(VR含む)を駆使して、、「はやぶさ2」の動きをわかりやすく可視化する。
 ✓ リュウグウの表面形状3次元モデル

(テクスチャレス問題対応)

- ✓ 探査機の位置・姿勢推定(リュウグウの運動情報)
- ✓ 3次元表示(探査機モデル等を重畳する)
- ✓ vSLAMデモ装置(VR表示含む)

6. 共同研究 共同研究成果【その1】

【1】株式会社アイヴィス、株式会社ビュープラス 超高感度マルチカメラや深層学習を利用した高付加価値vSLAM技術

宇宙探査フィールドのvSLAM処理例:

(左上)照明が弱いため一般カメラでは画像取得が難しい. (左下)超高感度カメラの取得画像. (右)超高感度カメラによるvSLAM処理結果, 3次元環境地図とカメラ位置(青い枠)

^{6. 共同研究} 共同研究成果【その2】 √[™]→×

【2】株式会社コンセプト、株式会社モルフォ テクスチャレスシーンのためのロバストなVisual SLAMの研究

オフィスシーンのVisualSLAM処理例(1): (左)取得画像と抽出した画像特徴の重畳表示、(右)得られた3次元環境地図とカメラ位置:空間中の点が特徴点の3次元位置を表し、手前の緑枠線がカメラ位置を示している

オフィスシーンのVisualSLAM処理例(2): (左)取得画像と抽出した画像特徴の重畳表示(テク スチャレス部分の特徴抽出が工夫されている)、(右)得られた3次元環境地図とカメラ位置

6. 共同研究

アイビス社vSLAM処理結果 (横回転、縦回転表示)

コンセプト社vSLAM処理結果 (接近表示)

6. 共同研究

探査ハブの共同研究

◆JAXA 宇宙探査イノベーションハブ

http://www.ihub-tansa.jaxa.jp

◆株式会社アイヴィス,株式会社ビュープラス http://www.ivis.co.jp http://www.viewplus.co.jp

◆株式会社コンセプト,株式会社モルフォ

https://qoncept.co.jp https://www.morphoinc.com

7. 今後の予定

■記者説明会の予定

- •8月23日(木)16:30~17:30
- •9月 5日(水)11:00~12:00
- •9月27日(木)14:30~15:30

■アウトリーチ・イベント

- ▶ 子供向けイベント
 - "なぜなに「はやぶさ2」何でも質問教室"
 - •9月2日(日)14時~16時
 - 相模原市立博物館
 - ネット中継等も行う予定

探査機概要

リモートセンシング機器

中間赤外カメラ(TIR)

8~12µmでの撮像:小惑星表面温度を調べる

30m~25kmの範囲で、小惑星と探査機の間の距離を測定する

光学航法カメラ(ONC)

ONC: Optical Navigation Camera

目的:探査機誘導と科学計測のために 恒星と探査小惑星を撮像する。

科学観測項目:

- 探査小惑星形状・運動の観測 直径、体積、慣性主軸方向、章動運動
- 表面地形の全球観測 クレーター、構造地形、礫、レゴリス分布
- 表面物質の分光特性の全球観測 含水鉱物分布、有機物分布、宇宙風化度
- 試料採取地点付近の高解像度撮像 表面粒子の大きさ、形状、結合度、不均一性 サンプラー弾痕や接地痕の観測

NAGOYA UNIVERSITY

JAXA

- 探査小惑星の素性解明 含水鉱物や有機物の分布, 宇宙風化, 巨礫
- サンプル採取地点選定
 - 小惑星どこから試料採取す べきかの基本情報
- サンプルの産状把握
 - 試料採取地点の高分解能 の撮像

	ONC-T	ONC-W1	ONC-W2
検出器	二次元 Si-CCD	(1024 x 1024 ピクセル)	
視野方向	直下 (望遠)	直下 (広角)	側方 (広角)
視野角	6.35° × 6.35°	65.24° × 65.24°	
焦点距離	100m~∞	1m~∞	
空間 分解能	1m/pix @高度10km 1cm/pix @高度100m	10m/pix(1mm/pix	@高度10km @高度1m
観測波長	観測波長 390, 480, 550, 700, 860, 950, 589.5nm, お よび Wide		~655nm

中間赤外カメラ(TIR)

TIR=Thermal Infrared Imager

小惑星の表面温度は太陽に照らされる昼 間は上昇、夜間は低下するという日変化を する。

砂のように細粒の土質や、空隙の多い岩 石では表面温度の日変化は大きく、中身の 詰まった岩石は日変化が小さい。

小惑星からの熱放射の2次元撮像(サーモ グラフ)することによって、小惑星表面の物 理状態を調べる。

 ・検出器 ・観測波長 ・観測温度 ・観測温度 ・相対温度精度 ・相素数 ・視野角 ・解像度 	2次元非冷却ボロメータ 8~12μm -40~150℃ 0.3℃ 328×248(有効) 16°×12° 20m(高度20km) 5 cm(京度50m)
「胖你反	20m(高度20km)
	5cm(高度50m)

レーザ高度計(LIDAR)

LIDAR: LIght Detection And Ranging

- ・パルス方式のレーザ高度計。
- 対象天体に向けて波長1.064 µ mのパル スYAGレーザを発射し、レーザ光の往復 時間を測定することにより、高度を測定 する。
- 「はやぶさ2」のLIDARは、距離30m~
 25kmで測定することが可能である。
- ・LIDARは対象天体への接近、着陸時に用 いられる航法センサであるとともに、形状 測定、重力測定、表面特性測定、ダスト 観測に用いられる科学観測機器でもあ る。
- ・また、トランスポンダ機能も備えており、地 上 LIDAR 局との間で SLR(Space Laser Ranging)実験を行うことができる。

レーザ高度計エンジニアリングモデル

<u>料学目標</u> 探査小惑星の地形・重力場の観測 表面各地点のアルベド分布の観測 小惑星周囲に浮遊するダスト観測 小惑星の形状・質量・空隙率とその偏り 小惑星表面のラフネス ダスト浮遊現象

近赤外分光計(NIRS3)

NIRS3: Near InfraRed Spectrometer ('3'は3 μ mより)

近赤外線領域の3µm帯の反射スペクト ルには水酸基や水分子の赤外吸収が 見られる。NIRS3では、3µm帯の反射ス ペクトルを測定することで、小惑星表面 の含水鉱物の分布を調べる。

- 観測波長範囲:1.8-3.2 µm
- 波長分解能 :20 nm
- 視野全角 :0.1°
- 空間分解能 :35 m(高度20km) 2 m(高度1km)
- 検出器温度 :-85℃~-70℃
- S/N比 :50以上(波長2.6µm)

イノベーションハブ誕生の経緯

- 平成27年4月1日「国立研究開発法人」が誕生。
 - 目的:我が国の科学技術の水準の向上を通じた国民経済の発展その他の公益に資するため研究開発の最大限の成果を確保する。
- 国立研究開発法人を中核としたイノベーションの創出は「科学技術イノベーション総合戦略2014」の重点施策の一つ。
 - 同戦略では、イノベーションハブとは「イノベーションに向けて知識・技術、アイデアやノウハウを持った担い手が集 う『場』や、これら担い手をバーチャルに結ぶネットワークの結節点となる拠点」と定義。
 - 各法人はイノベーションシステムの強靭性・持続的な発展性を確保する観点から、組織としての機能強化の取組 みが必要。
- 科学技術振興機構JSTは、イノベーションハブ構築支援事業を設立し、JAXAは「太陽系フロンティア開拓による人類 の生存圏・活動領域拡大に向けたオープンイノベーションハブ」として、採択された。
 - -国立研究開発法人が我が国の研究開発成果の中核的な拠点として必要な役割を果たすための機能強化として、 「イノベーションハブ」の構築を支援する(2015年から5年間)。
 - -各法人の独自資金に加え、研究開発成果の最大化のため、「イノベーションハブ」として運営・発展していくための 体制整備、戦略立案・実行のために必要となる社会・市場の俯瞰、調査・分析、クロスアポイント制度の導入等に よる人材交流の促進、連携機関との共同研究等をJSTが支援。
 - -進め方として、産官学を対象とした「宇宙探査オープンイノベーションフォーラム」を定期的に開催し、宇宙探査の 課題(大型化、長期化、高コスト化)を解決するための技術提案について意見交換を行う。それらの結果を踏まえ た研究課題に対して情報提供依頼書(RFI)を発出している。ここでの情報を基に、研究提案の募集(RFP)を行い 、FY27は31テーマ、FY28は9テーマ、FY29は17テーマを選定し、研究を実施している。

宇宙探査イノベーションハブ

宇宙探査イノベーションハブは、JSTによるハブ構築支援を受けながら、従来の宇宙 関連企業への発注型から、異分野融合によりイノベーションを創出し、宇宙探査をテー マとした宇宙開発利用の拡大と事業化を目指す新たな仕組みを構築する。 アウトカムとして、宇宙探査への参加者を拡大し、新たな技術に裏打ちされた宇宙探 査シナリオ・ミッションを実現し、入り口から社会実装も考慮することにより社会課題の 解決や産業競争力の向上を達成する。

