ジオスペース探査衛星（ERG）

ミッション目的
地球のまわりの宇宙空間、ジオスペースは、太陽からのプラズマ流（太陽風）と地球の磁場が相互作用し、時々刻々と変化する激しい世界です。電子やイオンが地球の超低層大気に降り込んで発光するオーロラも、ジオスペースと密接にかかわっています。太陽表面で爆発現象が起こると、ジオスペースでは宇宙風が起こります。その影響は、人工衛星や国際宇宙ステーションに滞在する宇宙飛行士にとっても危険なものであり、宇宙風がどのように発達するのかを明らかにするために、「ジオスペース探査衛星（ERG: Exploration of energization and Radiation in Geospace）」は地球を取り巻く放射帯（ヴァン・アレン帯）の中で粒子を捕らえ、その場の電磁波を観測します。

衛星諸元
大きさ 1.5mx1.5mx2.7m
（太陽電池パドル展開時：5.2mx6.0mx2.7m）
（最大展開サイズ：ワイヤーアンテナ長 15m）
質量 約 350kg

投入軌道
軌道 極円軌道
高度 近地点 約 300km、遠地点 約 33200km
傾斜角 約 31度
周期 約 580分

主な観測装置
超高エネルギー電子分離器（KEP-a）
高エネルギー電子分離器（HEP-a）
中間エネルギー電子分離器（MEP-a）
低エネルギー電子分離器（LEP-a）
中間エネルギーイオン分離器（MEP-I）
低エネルギーイオン分離器（LEP-I）
磁場観測器（MGF）
電場・プラズマ波動観測器（PWE）
ソフトウェア型波動粒子相互作用解析装置（S-WPI/A）

ロケット打ち上げを日常的なものに
イプシロンロケット2号機
イプシロンロケットはロケットの打ち上げが日常的になり、宇宙がもっと身近に感じられる時代の実現を目指したロケットです。組立・点検などのコストを効率化することにより、運用コストの低減を実現し、コンパクトな打ち上げシステムを構築しました。
2013年9月14日に試験機の打ち上げを成功させた後に、「打ち上げ能力の向上（試験機に比べて30%向上）」と「搭載可能な裁量の拡大」を目的とした強化型開発に取り組んでいます。ジオスペース探査衛星（ERG）は強化型イプシロンで打ち上げられます。
試験機ではフェアリングの中に覆われていて第3段モータを大型化してフェアリングの外に出すことによって推進能力を約1.5倍に増加させることが可能となり、またフェアリング内部に衛星と第3段のみを格納することで、ERG衛星のようなより大きな衛星が搭載できるようになりました。さらにロケット構造や電子機器の軽量化を図っています。

<table>
<thead>
<tr>
<th>項目</th>
<th>イプシロン試験機（2013年打ち上げ）</th>
<th>強化型イプシロン</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>基本形態</td>
<td>オプション形態</td>
</tr>
<tr>
<td>頂点</td>
<td>約 24.4m</td>
<td>約 24.4m</td>
</tr>
<tr>
<td>全長</td>
<td>約 91.0t</td>
<td>約 92.0t</td>
</tr>
<tr>
<td>全重量</td>
<td>太陽同期軌道</td>
<td>450 kg 以上</td>
</tr>
<tr>
<td>太陽同期軌道</td>
<td>長楕円軌道</td>
<td>-</td>
</tr>
</tbody>
</table>

※ 近地点高度 200km、遠地点高度 28,700km（夏期）、31,100km（冬期）