日本の宇宙開発史上初めて、約1か月の間に3機の衛星が地上から打ち上げられました。まず1月に多くの球体ならびに地球振動体の打ち上げが行われ、2月にはH-IIAとMTSAT-2/H-IIA及びH-IIBの打ち上げが実施されました。「ASTRO-F/M-V」では、観測機器の変更や空間の利用を含め、地球観測に関する研究が推進されています。

MTSAT-2/H-IIAの打ち上げは、実験衛星の打ち上げを目的としており、打ち上げに成功したことが確認されました。H-IIAの打ち上げも順調に進行し、宇宙開発の進歩を実感できる場面でした。

このように、我々は宇宙の魅力をより深く理解する機会を提供しています。H-IIAの打ち上げは、我々が宇宙観測のための技術を試み、将来の宇宙観測機器の開発を支援する重要なステップです。
特集
打ち上げ
続く!

この1か月の間に、種子島宇宙センター、内之浦宇宙空間観測所で3機の衛星の打ち上げがあります。整備作業を並行して進めることで、JAXA、日本としても初めてのことです。打ち上げの準備を、鹿児島宇宙センター園田所長、赤外線天文衛星ASTRO-Fプロジェクトマネージャーのインタビューを含む、ビジュアル、インタビュー、その他の情報を取り入れたリポートです。
打ち上げ

インタビュー

打ち上げを聞く

現場と

ともに歩む

鹿児島宇宙センターの園田所長

打ち上げ実施責任者代理として、園田所長は、打ち上げや打ち上げの準備、打ち上げに携わってきた経験の中で、打ち上げに思いを凌ました。

今後打ち上げ機数が増える、短期間での打ち上げ要望が多いため

JAXA役員の職にあたり、常時

打ち上げや打ち上げの準備を務め、打ち上げを担当している。その間、打ち上げの実績において、打ち上げの準備を務め、打ち上げを担当している。

園田所長は、打ち上げを担当しており、打ち上げを担当している。その間、打ち上げを担当している。

園田所長は、打ち上げを担当しており、打ち上げを担当している。その間、打ち上げを担当している。

園田所長は、打ち上げを担当しており、打ち上げを担当している。その間、打ち上げを担当している。
手順書インプットするディー時でした。その頃は企画班と飛行安全課を兼務していた。手順書の作成は、作業者の業務処理、資材類似の調査などが必要で、これを進める。2機同時の作業を行うことで、実作業者の判断が速く、業の作業を行うため、作業者の指揮のもとで作業が進められており、計画段階から推奨されている。これにより、作業者は必要に応じて指示の下で作業が進められていた。なお、これらの指示が被作業者の判断を要求するものである。
日本の赤外線天文衛星

ASTRO-F

の思想と技術
望遠鏡であり、衛星であり、冷凍庫である観測システムは、どう作られ、何を狙うのか。

赤外線で見る星の誕生

それはどうして、宇宙から、赤外線で観測できるのであろうか？

赤外線で観測することになったのは、宇宙の中のある所で光が発生している領域や、天体を観測することができるからです。

赤外線の性質は、光より長波長、エネルギーが低いほうが、熱の発生する場所を観測できるからです。

だいたい、発熱する場所の温度は3000ケルビン以上にあることを示すことが多いため、赤外線で観測することができるのです。

しかし、赤外線は、太陽の光よりも長波長、エネルギーが低い光なので、観測するためには、望遠鏡が必要です。

したがって、望遠鏡は、赤外線を観測するための最終手段となるのです。

望遠鏡は、何を観測するかを決定する重要な役割を果たしています。

赤外線は、宇宙の中での発生する場所を観測するため、衛星であることも、重要です。

衛星は、地球から、観測できるように、地球の影響を受けることなく、自由に観測することができます。

衛星は、望遠鏡の観測に必要な長波長、エネルギーを観測するための重要な役割を果たしています。

望遠鏡は、衛星を観測するための重要な手段となります。

望遠鏡は、衛星を観測するための重要な手段となります。
宇宙を飛ぶ

【省エネ冷凍機】

まずは、60リットルの液体リウムを搭載していました。タンクだけでもかなり大きいです。

赤外線の場合は、冷やせば冷却能力が高まるので、冷やさないと、その冷却能力が発揮できなくなるのです。ASTROの冷凍機は、非常に高機能な熱の流し出しポンプを2機搭載しています。その効率を上げることが大切です。担当者は、target="_blank"中最も熱効率の高いポンプのものを選びました。これが冷凍機の真髄です。

赤外線温度が変化する前に、液を抜いて、運用を始めようとしました。しかし、冷凍機の温度が下がると、このポンプは、非常に効率が落ち、液が流れないからです。そこで、ポンプの温度を上げ、液を抜いてから、運用を始めることにしました。

赤外線温度が下がると、ポンプの効率が落ち、液が流れないからです。そこで、ポンプの温度を上げ、液を抜いてから、運用を始めることにしました。

赤外線温度が変化する前に、液を抜いて、運用を始めようとしました。しかし、冷凍機の温度が下がると、このポンプは、非常に効率が落ち、液が流れないからです。そこで、ポンプの温度を上げ、液を抜いてから、運用を始めることにしました。

赤外線温度が変化する前に、液を抜いて、運用を始めようとしました。しかし、冷凍機の温度が下がると、このポンプは、非常に効率が落ち、液が流れないからです。そこで、ポンプの温度を上げ、液を抜いてから、運用を始めることにしました。

赤外線温度が変化する前に、液を抜いて、運用を始めようとしました。しかし、冷凍機の温度が下がると、このポンプは、非常に効率が落ち、液が流れないからです。そこで、ポンプの温度を上げ、液を抜いてから、運用を始めることにしました。

赤外線温度が変化する前に、液を抜いて、運用を始めようとしました。しかし、冷凍機の温度が下がると、このポンプは、非常に効率が落ち、液が流れないからです。そこで、ポンプの温度を上げ、液を抜いてから、運用を始めることにしました。

赤外線温度が変化する前に、液を抜いて、運用を始めようとしました。しかし、冷凍機の温度が下がると、このポンプは、非常に効率が落ち、液が流れないからです。そこで、ポンプの温度を上げ、液を抜いてから、運用を始めることにしました。

赤外線温度が変化する前に、液を抜いて、運用を始めようとしました。しかし、冷凍機の温度が下がると、このポンプは、非常に効率が落ち、液が流れないからです。そこで、ポンプの温度を上げ、液を抜いてから、運用を始めることにしました。

赤外線温度が変化する前に、液を抜いて、運用を始めようとしました。しかし、冷凍機の温度が下がると、このポンプは、非常に効率が落ち、液が流れないからです。そこで、ポンプの温度を上げ、液を抜いてから、運用を始めることにしました。

赤外線温度が変化する前に、液を抜いて、運用を始めようとしました。しかし、冷凍機の温度が下がると、このポンプは、非常に効率が落ち、液が流れないからです。そこで、ポンプの温度を上げ、液を抜いてから、運用を始めることにしました。

赤外線温度が変化する前に、液を抜いて、運用を始めようとしました。しかし、冷凍機の温度が下がると、このポンプは、非常に効率が落ち、液が流れないからです。そこで、ポンプの温度を上げ、液を抜いてから、運用を始めることにしました。

赤外線温度が変化する前に、液を抜いて、運用を始めようとしました。しかし、冷凍機の温度が下がると、このポンプは、非常に効率が落ち、液が流れないからです。そこで、ポンプの温度を上げ、液を抜いてから、運用を開始することにしました。

赤外線温度が変化する前に、液を抜いて、運用を始めようとしました。しかし、冷凍機の温度が下がると、このポンプは、非常に効率が落ち、液が流れないからです。そこで、ポンプの温度を上げ、液を抜いてから、運用を開始することにしました。

赤外線温度が変化する前に、液を抜いて、運用を始めようとしました。しかし、冷凍機の温度が下がると、このポンプは、非常に効率が落ち、液が流れないからです。そこで、ポンプの温度を上げ、液を抜いてから、運用を開始することにしました。

赤外線温度が変化する前に、液を抜いて、運用を始めようとしました。しかし、冷凍機の温度が下がると、このポンプは、非常に効率が落ち、液が流れないからです。そこで、ポンプの温度を上げ、液を抜いてから、運用を開始することにしました。

赤外線温度が変化する前に、液を抜いて、運用を始めようとしました。しかし、冷凍機の温度が下がると、このポンプは、非常に効率が落ち、液が流れないからです。そこで、ポンプの温度を上げ、液を抜いてから、運用を開始することにしました。

赤外線温度が変化する前に、液を抜いて、運用を始めようとなかなか熱が和らがり、冷やさないと、その冷却能力が発揮できないわけではない。冷凍機は省エネのため、冷却能力が低くなると、効率が落ちて、液が流れないからです。そこで、ポンプの温度を上げ、液を抜いてから、運用を開始することにしました。

赤外線温度が変化する前に、液を抜いて、運用を始めようとなかなか熱が和らがり、冷やさないと、その冷却能力が発揮できないわけではない。冷凍機は省エネのため、冷却能力が低くなると、効率が落ちて、液が流れないからです。そこで、ポンプの温度を上げ、液を抜いてから、運用を開始することにしました。

赤外線温度が変化する前に、液を抜いて、運用を始めようとなかなか熱が和らがり、冷やさないと、その冷却能力が発揮できないわけではない。冷凍機は省エネのため、冷却能力が低くなると、効率が落ちて、液が流れないからです。そこで、ポンプの温度を上げ、液を抜いてから、運用を開始することにしました。

赤外線温度が変化する前に、液を抜いて、運用を始めようとなかなか熱が和らがり、冷やさないと、その冷却能力が発揮できないわけではない。冷凍機は省エネのため、冷却能力が低くなると、効率が落ちて、液が流れないからです。そこで、ポンプの温度を上げ、液を抜いてから、運用を開始することにしました。

赤外線温度が変化する前に、液を抜いて、運用を始めようとなかなか熱が和らがり、冷やさないと、その冷却能力が発揮できないわけではない。冷凍機は省エネのため、冷却能力が低くなると、効率が落ちて、液が流れないからです。そこで、ポンプの温度を上げ、液を抜いてから、運用を開始することにしました。

赤外線温度が変化する前に、液を抜いて、運用を始めようとなかなか熱が和らがり、冷やさないと、その冷却能力が発揮できないわけではない。冷凍機は省エネのため、冷却能力が低くなると、効率が落ちて、液が流れないからです。そこで、ポンプの温度を上げ、液を抜いてから、運用を開始することにしました。

赤外線温度が変化する前に、液を抜いて、運用を始めようとなかなか熱が和らがり、冷やさないと、その冷却能力が発揮できないわけではない。冷凍機は省エネのため、冷却能力が低くなると、効率が落ちて、液が流れないからです。そこで、ポンプの温度を上げ、液を抜いてから、運用を開始することにしました。

赤外線温度が変化する前に、液を抜いて、運用を始めようとなかなか熱が和らがり、冷やさないと、その冷却能力が発揮できないわけではない。冷凍機は省エネのため、冷却能力が低くなると、効率が落ちて、液が流れないからです。そこで、ポンプの温度を上げ、液を抜いてから、運用を開始することにしました。

赤外線温度が変化する前に、液を抜いて、運用を始めようとなかなか熱が和らがり、冷やさないと、その冷却能力が発揮できないわけではない。冷凍機は省エネのため、冷却能力が低くなると、効率が落ちて、液が流れないからです。そこで、ポンプの温度を上げ、液を抜いてから、運用を開始することにしました。

赤外線温度が変化する前に、液を抜いて、運用を開始することにしました。
2月18日に、H-IIAロケット9号機で打ち上げられた運輸多目的衛星新2号MTSAT-2)は、昨年2月に打ち上げられたMTSAT-1R（ひまわり6号）と同様に、地上3万6000kmの静止軌道上に投入されます。MTSAT-2は2つのミッションがあります。国土交通省航空局が運用する航空交通管制ミッションでは、MTSAT-1Rとの機体間で確実な管理をめざします。また、気象庁が運用する気象観測ミッションでは、軌道上パックアップ衛星として特徴します。
昨年12月19日、種子島宇宙センターで珍しい光景がありました。この日、大型ロケット 発射場で「2つのH-IIAロケット」を見ることができました。大型ロケット 組立棟では最終整備作業を進める8号機 1月23日「だいち」の打ち上げに成功しました）と第1射点で極低温試験を行う9号機 2月18日、運輸多目的衛星新2号の打ち上げに成功しました）の2機です。

上の写真は、ランドショットカメラという特殊なカメラで撮った「2つのH-IIAロケット」です。このカメラは360度の撮影ができるもので、航空写真とか建設現場などで使われます。この写真は中央にカメラを設置し180度の設定で撮影しました。右写真は普通のカメラで撮った第1射点から見た2つのH-IIAロケットです。

（RSC/JAXA）
2つのH-1

種子島宇宙センター
大型ロケット 発射場

○大型ロケット 発射管制棟 (B/H)
○H-IIA-8
○大型ロケット 組立棟 (VAB)
○カメラ位置
○第1射点 (大型ロケット) 発射塔
○H-IIA-9
○第2射点
同じ失敗を繰り返さないために

井口洋夫 寺門和夫

わが国の宇宙実験
成果と課題/今後の展望

私たち地球に生きるものが抱く宇宙環境への興味を、さまざまな実験を通じて追究してきた多くの科学研究者たち。彼らの体験を通じて得られたものは何か、
今後に期待されるものは何か、JAXA関係の井口洋夫さんとともに考える。
宇宙科学実験について熱く語る井口さんと、科学ジャーナリストの寺門和夫が
これまでの実験の意義と教訓、そして未来を問う。
宇宙実験はハイテクでなく、ロテクだとも思っている。寺門には、独自の成果は誰もが chùn実験からとおり、だが、この独自というのには、日本独自の装置をいえではないと考える。技術の主でないノウハウは、なかなかの素材で、技術の主でない技術のノウハウは、なかなかの素材である。技術の主でない技術のノウハウは、なかなかの素材である。

寺門は宇宙実験にまではわからず、技術の主でない技術のノウハウは、なかなかの素材である。技術の主でない技術のノウハウは、なかなかの素材である。
JAXA附属。1927年生まれ。広島県出身。
1950年東京大学物理科学部深造、理学博士（東京大学）。
1967年東京大学教授（物理科学部）。
1996年宇宙開発事業団宇宙環境利用研究システム長。
2003年JAXA調査室（現在に至る）。
1994年文化功労者、2001年文化勲章受章。

「現れる」とは、宇宙実験の結果を示すもの。実験の結果は、理論と一致しない場合も存在し、物理現象の理解を深めるために必要な情報となる。一方で、実験が予想通りの結果を示す場合も、新たな物理現象の発見につながる可能性がある。したがって、宇宙実験は、科学者らにとって非常に重要な役割を担っている。
胡桃の殻のなかから

— ケンブリッジの空で —

JAXA 宇宙科学技术研究本部
宇宙情報・エネルギー工学研究系教授
平林 久

遥かな時空に思いをはせ

ホーロング博士

宇宙論の先端を歩く世界的な研究者であり、
それを一般向けにわかりやすく伝えることに精力を注ぐ、ホーリング博士。
ホーリング博士は宇宙論の研究を行ない、宇宙論の重要な理論を提唱し、
現在では観測技術の進歩によって、宇宙に関する理論の検証が可能になりつつある。

15年間で、宇宙論の研究を行ない、宇宙論の重要な理論を提唱し、
現在では観測技術の進歩によって、宇宙に関する理論の検証が可能になりつつある。

ホーリング博士は宇宙論の研究を行ない、宇宙論の重要な理論を提唱し、
現在では観測技術の進歩によって、宇宙に関する理論の検証が可能になりつつある。

ホーリング博士は宇宙論の研究を行なう、宇宙論の重要な理論を提唱し、
現在では観測技術の進歩によって、宇宙に関する理论の検証が可能になりつつある。

ホーリング博士は宇宙論の研究を行なう、宇宙論の重要な理論を提唱し、
現在では観測技術の進歩によって、宇宙に関する理論の検証が可能になりつつある。

ホーリング博士は宇宙論の研究を行なう、宇宙論の重要な理论を提唱し、
現在では観測技術の進歩によって、宇宙に関する理論の検証が可能になりつつある。

ホーリング博士は宇宙論の研究を行なう、宇宙論の重要な理論を提唱し、
現在では観測技術の進歩によって、宇宙に関する理論の検証が可能になりつつある。

ホーリング博士は宇宙論の研究を行なう、宇宙論の重要な理論を提唱し、
現在では観測技術の進歩によって、宇宙に関する理論の検証が可能になりつつある。

ホーリング博士は宇宙論の研究を行なう、宇宙論の重要な理論を提唱し、
現在では観測技術の進歩によって、宇宙に関する理論の検証が可能になりつつある。

ホーリング博士は宇宙論の研究を行なう、宇宙論の重要な理論を提唱し、
現在では観測技術の進歩によって、宇宙に関する理論の検証が可能になりつつある。

ホーリング博士は宇宙論の研究を行なう、宇宙論の重要な理论を提唱し、
現在では観測技術の進歩によって、宇宙に関する理论の検証が可能になりつつある。

ホーリング博士は宇宙論の研究を行なう、宇宙論の重要な理論を提唱し、
現在では観測技術の進歩によって、宇宙に関する理論の検証が可能になりつつある。

ホーリング博士は宇宙論の研究を行なう、宇宙論の重要な理論を提唱し、
現在では観測技術の進歩によって、宇宙に関する理論の検証が可能になりつつある。

ホーリング博士は宇宙論の研究を行なう、宇宙論の重要な理論を提唱し、
現在では観測技術の進歩によって、宇宙に関する理論の検証が可能になりつつある。

ホーリング博士は宇宙論の研究を行なう、宇宙論の重要な理論を提唱し、
現在では観測技術の進歩によって、宇宙に関する理论の検証が可能にな
宇宙の謎の最終線

21世紀にもとづく宇宙の物理学者たち

宇宙論の道を選んだ理由を教える

『ホーキング：宇宙のすべてを語る』

ランダムハウス 講談社

S

H

宇宙へ

そして、未知との遭遇

大学院生の時期に、宇宙というテーマを選びました。人類が宇宙を理解すること、宇宙が持つ未来を理解すること、という理由からです。

ホーキング：宇宙のすべてを語る

著作は、その宇宙の特性についての深い理解を示しています。特に、宇宙の膨張、ブラックホール、暗黒エネルギーについての解説は、宇宙の謎を理解するために重要な役割を果たしています。

宇宙に存在するステンレス鋼の粒子は、宇宙の起源についての重要な役割を果たしています。宇宙の膨張を理解するためには、これらの粒子の特性を理解する必要があるからです。

宇宙を理解するためには、これらの粒子の特性を理解する必要があります。ホーキングの著書は、その宇宙の特性についての深い理解を示しています。特に、宇宙の膨張、ブラックホール、暗黒エネルギーについての解説は、宇宙の謎を理解するために重要な役割を果たしています。

宇宙に存在するスケートの粒子は、宇宙の起源についての重要な役割を果たしています。宇宙の膨張を理解するためには、これらの粒子の特性を理解する必要があるからです。
Brief History Of

The development of language and communication has significantly influenced human societies throughout history. From prehistoric times to modern technology, communication has evolved in various forms and media.

In ancient times, communication was primarily oral and relied on storytelling and poetry to pass on knowledge and cultural values. Writing systems evolved, allowing for the preservation of written records and the spread of ideas beyond oral tradition.

The invention of the printing press in the 15th century revolutionized communication by making books more widely accessible and reducing the cost of printing.

In the 20th century, advancements in technology led to the development of radio, television, and the internet, which transformed the way information is transmitted and received.

Today, digital communication tools such as smartphones, social media, and instant messaging apps continue to evolve, shaping how we communicate and interact with each other globally.

As technology advances, it is crucial to consider the impact on society, language, and culture, ensuring that communication remains effective and inclusive for all.

...
最 前 線

観測ロケット
S - 310 - 36 号機
打ち上げに成功

1月22日午後1時、内之浦宇宙空間観測所から、宇宙空間におけるアレインテックの構成実験を行う観測ロケット S - 310 - 36 号機を打ち上げ、データの収集に成功しました。

実験では、ロケットから切り離し、観測用の機をもつ大型アレインテックを展開しました。子機が三角形状に広がり、この観測機をひとつの大型アレインテックに見て、送電実験が行われました。

S - 310 ロケットは、全長7.8m、重量0.8トンの1段式固体ロケット。
JAXAは、国際宇宙ステーション（ISS）搭乗宇宙飛行士3名（古川、星出、山崎）にミッションスペシャリスト（MS）の資格を取得させるため、NASAに派遣しました。3名は、約1年3ヶ月にわたり、NASAジョンソン宇宙センターを中心にMS候補者としての訓練を実施しており、2022年1月10日にNASAからMSとして認定されました。なおJAXAは、「きぼう」日本実験棟の組立・起動に成功したため、既に活動を開始している土井、若田、野口宇宙飛行士とともに、引き続き3名をヒューマンで訓練させて、MS訓練を継続させるとともに、スペースシャトルでの飛行やISS長期滞在に対応できるよう飛行士体制の強化・維持をはかっていきます。

"ミッションスペシャリスト（MS）：搭乗運用技術者、スペースシャトルのシステム運用を行うほか、ロボット・アームの操作、軌外活動、実験運用などを行う。"

オホーツク海に広がる流氷の最新状況が「オホーツク海の海水分布」ページとして、地球観測情報推進センター(EORC)のサイトで公開されています。オホーツク海全域に広がる流氷の様子。海水分布の画像が毎日更新されています。このほかEORCのサイトでは、衛星が捉えた地球の風景、「海洋・気象」、「海洋・気候」などの状況をお伝えしております。ぜひご覧ください。

1月24日に初場所まで海水は、2月12日のこの画面では、知床半島に接近しています。画面で極く見えるのが海水で、色が濃いと厚い氷になります。NASAの地球観測衛星Aquaに載っているJAXAが開発した観測センサーAMSR-Eデータから作成しています。
事業所等一覧

本社
航空宇宙技術研究センター
〒182-8522
東京都調布市深大寺東町7-44-1
T E L: 042-40-3000
F A X: 0422-40-3281

相模原キャンパス
〒229-8510
神奈川県相模原市南台3-1-1
T E L: 042-751-3911
F A X: 042-759-8440

筑波宇宙センター
〒305-8505
茨城県つくば市千見2-1-1
T E L: 029-868-5000
F A X: 029-868-5988

種子島宇宙センター
〒891-3793
鹿児島県指宿市指宿町
大字安里字明津
T E L: 0997-26-2111
F A X: 0997-26-9100

内之浦宇宙空間観測所
〒893-1402
鹿児島県指宿市新村町
T E L: 0994-31-6978
F A X: 0994-67-3811

地球観測利用推進センター
〒104-6023
東京都中央区晴海1-8-10
T E L: 03-6221-9000
F A X: 03-6221-9191

名古屋駐在員事務所
〒460-0022
愛知県名古屋市中区金山1-12-14
T E L: 052-332-3251
F A X: 052-339-1280

白田宇宙空間観測所
〒384-0306
長野県佐久市上小田切
字大曲1831-6
T E L: 0267-81-1230
F A X: 0267-81-1234

内之浦宇宙空間観測所
〒893-1402
鹿児島県指宿市新村町
T E L: 0994-31-6978
F A X: 0994-67-3811

勝浦宇宙通信所
〒299-5213
千葉県勝浦市芳賀花丘1-14
T E L: 0470-73-0654
F A X: 0470-70-7001

沖縄宇宙通信所
〒904-0402
沖縄県宜野座郡恩納村宇富富士
金原1712
T E L: 098-967-8211
F A X: 098-983-3001

海外駐在員事務所

【ワシントンD.C.】
JAXA Washington D.C. Office
T E L: +1-202-333-6844
F A X: +1-202-333-6845

【ヒューストン】
JAXA Houston Office
100 Cybernics Boulevard, Suite 201 Houston, TX 77058 U.S.A.
T E L: +1-281-280-0222
F A X: +1-281-468-1024

【ケネディ宇宙センター】
JAXA KSC Liaison Office
GoC Bldg., Room No.101, Code: JAXA-KSC
John F. Kennedy Space Center, FL 32899, U.S.A.
T E L: +1-321-867-3897/3295
F A X: +1-321-452-9662

【パリ】
JAXA Paris Office
3 Avenue Hoche, 75008-Paris, France
T E L:+33-1-4622-4983
F A X:+33-1-4622-4932

【バンコク】
JAXA Bangkok Office
B B Bldg., 13 Fl./Room No.1305
54 Awoke Road, Sukhumvit 21, Bangkok 10110, Thailand
T E L:+66-2-260-7026
F A X:+66-2-260-7027