

小惑星探査機「はやぶさ2」の リュウグウ近傍における運用状況

2018年7月19日

JAXA はやぶさ2プロジェクト

「はやぶさ2」に関連して、

・ミッションの現状 ・サイエンス(リモセン、サンプル、TIR) ・ミッションスケジュール

について紹介する。

目次

- 0.「はやぶさ2」概要・ミッションの流れ概要
- 1. プロジェクトの現状と全体スケジュール
- 2. 期待されるサイエンス成果
- 3. サンプル分析への期待
- 4. 中間赤外カメラの初期観測結果
- 5. ミッションスケジュール

6. 今後の予定

<u>目的</u>

「はやぶさ」が探査したS型小惑星イトカワよりも始原的なタイプであるC 型小惑星リュウグウの探査及びサンプルリターンを行い、原始太陽系に おける鉱物・水・有機物の相互作用の解明することで、地球・海・生命の 起源と進化に迫るとともに、「はやぶさ」で実証した深宇宙往復探査技術 を維持・発展させて、本分野で世界を牽引する。

期待される成果と効果

- ・水や有機物に富むC型小惑星の探査により、地球・海・生命の原材料 間の相互作用と進化を解明し、太陽系科学を発展させる。
- ・衝突装置によって生成されるクレーター付近からのサンプル採取という 新たな挑戦も行うことで、日本がこの分野において、さらに世界をリード する。

・太陽系天体往復探査の安定した技術を確立する。

<u>特色:</u>

- ・世界初のC型微小地球接近小惑星のサンプルリターンである。
- ・小惑星にランデブーしながら衝突装置を衝突させて、その前後を観測 するという世界初の試みを行う。
- ・「はやぶさ」の探査成果と合わせることで、太陽系内の物質分布や起源 と進化過程について、より深く知ることができる。

<u>国際的位置づけ:</u>

- ・日本が先頭に立った始原天体探査の分野で、C型小惑星という新たな 地点へ到達させる。
- ・「はやぶさ」探査機によって得た独自性と優位性を発揮し、日本の惑星 科学及び太陽系探査技術の進展を図るとともに、始原天体探査のフロ ンティアを拓く。
- ・NASAにおいても、小惑星サンプルリターンミッションOSIRIS-REx (打 上げ:平成28年、小惑星到着:平成30年、地球帰還:平成35年)が実施 されており、サンプルの交換が取り決められていることに加えて科学者 の相互交流が行われており、両者の成果を比較・検証することによる 科学的成果も期待されている。

(イラスト 池下章裕氏)

はやぶさ2 主要緒元質量約 609kg打上げ平成26年(2014年)12月3日軌道小惑星往復小惑星到着平成30年(2018年)地球帰還平成32年(2020年)小惑星滞在期間約18ヶ月探査対象天体地球接近小惑星Ryugu(リュウグウ)

主要搭載機器

サンプリング機構、地球帰還カプセル、光学カメラ、レーザー測距 計、科学観測機器(近赤外、中間赤外)、衝突装置、小型ローバ

ミッションの流れ概要

1. プロジェクトの現状と 全体スケジュール

現状:

- リュウグウ到着(2018年6月27日)以降、探査機は高度約20kmのホ ームポジション(BOX-A)に滞在
- 観測機器(ONC、LIDAR、NIRS3、TIR)による観測を継続
- 今週(7/16~)はBOX-Aから低高度(BOX-C)への移行の準備を行い、本日、降下中。

全体スケジュール:

2. 期待されるサイエンス成果

2.1 見えてきたリュウグウの姿

・きわめて暗い表面を持つ. 自転軸方向は軌道面に垂直に近い
 ・クレーター, 多数の岩塊(130 mの大岩含む), 溝状地形など

UTC 2018-06-30 14:13

UTC 2018-06-26 03:50

(c) JAXA, U. of Tokyo, Kochi U., Rikkyo U., Nagoya U., ChibaTech, Meiji U., U. of Aizu

クレジット: JAXA, 東京大, 高知大, 立教大, 名古屋大, 千葉工大, 明治大, 会津大, 産総研

2.1 見えてきたリュウグウの姿

(動画)

クレジット: JAXA, 会津大, 東京大, 高知大, 立教大, 名古屋大, 千葉工大, 明治大, 産総研

2.2 リュウグウの形状モデル

別々の手法で形状モデルを作成したが、両者はよく一致している

会津大による形状モデル(SfM) 神戸大による形状モデル(SPC) クレジット:会津大,神戸大(形状モデル), Auburn Univ. (動画), JAXA

2.3 リュウグウの経度ゼロ度の点

経度ゼロ度として選ばれた地点

クレジット: JAXA, 東京大, 高知大, 立教大, 名古屋大, 千葉工大, 明治大, 会津大, 産総研

経緯:

- ・プロジェクトメンバーが、初期段階から目立つ特徴として 認識していた=2つの岩が上下に並んでいる
- ・写真で下の岩は赤道付近にあり、目印として適している。 注:写真は上が小惑星の北極(公開されている画像と逆向き)
- 選定理由: ・視認性がよい ・中心が求めやすい ・起伏が顕著 ・赤道に近い

2.4 20 km先の富士山とリュウグウ

横田康弘(JAXA)作成:(<u>http://www.city.fuji.shizuoka.jp/page/gazou/fmervo000001dsro.html</u>使用)

(動画)

2.5 リュウグウ表面上の岩塊分布

クレジット:近畿大/JAXA/東京大/高知大/立教大/名古屋大/千葉エ大/明治大/会津大/産総研

- 小さい天体の割に大きな岩塊がある:母天体の破片を集めた天体の可能性を示唆
- ・岩塊の数密度(単位面積当たりの個数)は、場所により、大きな差が見られる。
- ・表面試料を採取するタッチダウン地点を決めるには、岩塊の分布が鍵となる.
- ・表面物質移動の確認と理解にも役立つと考えられる.

2.6 LIDARによる形状測定

7月11日のスキャン観測において、リュ ウグウ全体の地形データが取得された. (上)地図上での観測点の分布. 色はレー ザー照射と小惑星表面のなす角度(真上 からのレーザー照射が0度). 地形デー タは形状モデルから算出した.

(右) レーザー高度計データから得られた リュウグウの形.形状モデルとほぼー 致している.

クレジット:国立天文台/JAXA/ 千葉工大/会津大/日本大/大阪大

2.7 期待されるサイエンス成果

- 可視(ONC)・近赤外(NIRS3)反射スペクトル:暗くフラット
 - どの隕石とも異なるリュウグウ反射スペクトルの特徴
 - 一方で小惑星や彗星には類似のものあり
 - きわめて暗い表面:炭素質物質の存在量が高い可能性.
 - ほぼ均質だが、地域性もあり、今後の精密解析が待たれる.
- ・リュウグウの母天体の再構成
 - 大きな岩塊は、リュウグウが母天体の破壊で形成された がれきが集積した天体であることを示唆
 - 試料採取地点を観測結果をもとに絞り込む(LSS)
 - ・まずは安全性,そして科学的価値の評価
 - ・ 試料の産状記載, 地質的なコンテクストの理解
 - 帰還試料による検証, OSIRIS-REx探査結果との比較

3. サンプル分析への期待

はやぶさ2 サンプラー:

科学分析に必要な最低量 100 mg を 天体表面複数地点(3箇所)で採取し 地上での汚染がない状態で 2020年 の最先端技術で速やかに分析 を可能にするサンプラー

1. サンプラーホーン内で弾丸 (タンタ ル製 5g)を発射し, 表面粒子を採取

3. サンプル分析への期待

はやぶさ2 サンプラー:

科学分析に必要な最低量 100 mg を 天体表面複数地点(3箇所)で採取し 地上での汚染がない状態で 2020年 の最先端技術で速やかに分析 を可能にするサンプラー

2. サンプラーホーン先端部の折り返しを利用して,表面粒子を採取

(アニメーション)

3. サンプル分析への期待

サンプルキャッチャー:

採取粒子を格納. 三部屋構造で 表面三地点で採取した試料を個 別に保管

サンプルコンテナ:

サンプルキャッチャーを密封して 保管し,地球に帰還.試料から 発生したガス成分(あれば)の分 析もおこなうことが可能

3. サンプル分析への期待

3. サンプル分析への期待

- リュウグウ試料初期分析(2021-)
- ・リュウグウ試料の科学的記載
- ・観測情報の物質科学的理解
- 太陽系の起源,初期進化/地球の海,生命材料の進化の 解明に繋がる情報の取得

6つのチーム体制 1. 化学分析チーム 2. 粗粒試料の岩石学・鉱物学チーム 3. 細粒試料の岩石学・鉱物学チーム 4. 揮発性物質分析チーム 5. 固体有機物分析チーム 6. 有機分子分析チーム

・リュウグウ試料のもつ科学的意義を提示

4. 中間赤外カメラの初期観測結果

TIR観測概要

★TIRの観測運用の内容

06/06 TIR動作チェック 06/07 リュウグウ・ライトカーブ観測(1)@2000km, 直径~0.5画素 06/18 リュウグウ・ライトカーブ観測(2)@200km, 直径~5画素 06/09-22 リュウグウ・1ショット撮像(ほぼ毎日)

- 06/27 <リュウグウ到着>
- 06/29 ダーク観測(深宇宙指向)
- 06/30 リュウグウ全球観測(1)@20km, 直径~50画素
- 07/02 画像ゆがみ調査観測
- TIR観測プログラム更新 07/03

大きくなるリュウグウ公開(今回)!!

ライトカーブ公開済み

2018/06/13 2018/06/12 2018/06/11 2018/06/10 提供:JAXA / 会津大学 / 立教大学 / 千葉工業大学 / 足利大学 / 北海道教育大学 / 北海道北見北斗高校 / 産業技術総合研究所 / 国立環境研究所 / 東京大学 / ドイツ航空宇宙センター / マックスプランク研究所 / スターリング大学

TIRサーモグラフィ(1自転分)

撮像日時:2018年6月30日7時2分~14時45分(UTC),8分毎,1自転分 撮像場所:リュウグウ上空20 km(ホームポジション),約20m/pixel 太陽距離:0.987AU(1AU:太陽と地球の年平均距離:約1.496億km)

(動画)

提供:JAXA/ 足利大学 / 立教大学 / 千葉工業大学 / 会津大学 / 北海道教育大学 / 北海道北見北斗高校 / 産業技術総合研究所 / 国立環境研究所 / 東京大学 / ドイツ航空宇宙センター / マックスプランク研究所 / スターリング大学

撮像日時:2018年6月30日7時2分~14時45分(UTC),8分毎,1自転分 撮像場所:リュウグウ上空20 km(ホームポジション),約20m/pixel 太陽距離:0.987AU(1AU:太陽と地球の年平均距離:約1.496億km)

★主な特徴

・特徴的な地形を捉えている (全体形状,巨大なクレータ・岩塊)

•南北温度差

(自転軸傾きによる季節変化=夏冬)

- ・朝~昼~夕の温度サイクルあり
- •絶対温度(精査中)

提供:JAXA/ 足利大学 / 立教大学 / 千葉工業大学 / 会津大学 / 北海道教育大学 / 北海道北見北斗高校 / 産業技術総合研究所 / 国立環境研究所 / 東京大学 / ドイツ航空宇宙センター / マックスプランク研究所 / スターリング大学

科学:太陽系の誕生と進化を解明する

参考:ファクトシートより

テーマ

①惑星を作った物質を調べる

原始太陽系円盤にはどの ような物質があり、惑星が 誕生するまでにどのように 変化したのか?

②惑星への成長過程を調べる

微惑星から惑星へ、天体 はどのようにして成長して いったのか?

- 惑星を作る元になった天体(微惑星)の構造を解明する。
- 天体の衝突破壊・衝突合体・再集積の過程でどのようなことが起こるのかを解明する。

<u>微惑星から惑星までの成長を解明</u>

キーワード:

- ラブルパイル天体:がれきの寄せ集めのような天体
- 衝突破壊・衝突合体:天体同士が衝突すると、互いに破壊しあう場合と合体して 1つの天体になる場合がある
- 再集積:衝突によってばらばらになった破片が重力で集まること

TIRの着陸地点選定(LSS)への貢献

★サイエンス目的:小惑星リュウグウの科学的な特徴

- ◆ 小惑星表層の地質的特徴の上空からの推定(岩盤,砂利,砂など)
- ◆ 分光データの解釈(粒径,空隙や熱放射成分の影響の除去)
- ◆ 試料の組織と収量(多様な組織を含む粒径の試料の採れる地域を選定)

★ミッション目的:探査機の安全かつ確実な運用の遂行

- ◆ 試料収量の増大(サンプラによる採取に適した粒径の地域を選定)
- ◆ 温度予報(探査機にとって熱すぎる地域を選定から除外)

◆ 障害物回避(探査機にとって危険な岩塊の少ない地域から選定)

TIR観測:まとめ

- TIRによる小惑星リュウグウの全球(極域の一部 を除く)の熱撮像に成功!
 小天体の10μm帯の2次元撮像では史上初
- 小惑星リュウグウの特徴的な地形や季節変化を 熱撮像により検知!
 全体形状,巨大なクレータや岩塊,南北温度差
- ・ 母天体内部を起源とする「岩塊」の熱物性特徴
 を測定! ⇒今後の詳細な調査に期待
 小惑星リュウグウの形成や内部進化の過程の解明へ!
- 着陸地点の選定に必要な科学およびミッション
 遂行上の情報を取得!
 粒径分布,温度環境,衝突回避など

5. ミッションスケジュール

<u>直近の運用計画</u>

- 通常は高度約20kmのホームポジションから観測
 = BOX-A
- ・高度を下げる運用

 BOX-C運用
 :7月17-23日、最低高度約6km(7/20~22
)
 - ▶ 中高度降下運用:8月1-2日、最低高度約5km(8/1)
 ▶ 重力計測降下運用:0日6.7日、最低高度約1km(0/1)
 - ▶ 重力計測降下運用:8月6-7日、最低高度約1km(8/7)
- ッアー観測
 - ➢ BOX-B運用:8月下旬

※BOXについては以下のページで説明する

5. ミッションスケジュール

※時刻は日本時間。運用計画や運用状況によって変更もありうる。

5. ミッションスケジュール

中高度降下運用概要

No	フェーズ	概要	高度
1	ホームポジション から降下	ホームポジションから降下。タッチダウンと同じ 降下手法(GCP-NAV)を用いる。NIRS3はON。	20 ~ 7 km
2	直下点撮像 (降下中)	ONC-T、TIRの観測開始。直下点の撮像を行う。	7 ~ 5 km
3	直下点撮像 (ホバリング)	高度5kmを維持しつつ、直下点の撮像を行う。	5 km
4	直下点撮像 (上昇中)	上昇のための加速を行い、その後も7kmまで 上昇しながら直下点の観測を行う。	5 ~ 7 km
5	ホームポジション 復帰	上昇しつつデータのダウンリンクを開始する。	7 ~ 20 km

※GCP-NAVについては次ページを参照

5. ミッションスケジュール

中高度降下運用とBOX-C運用の比較

フェーズ	中高度降下運用	BOX-C運用
降下時間	半日程度	数日かけて降下
降下中の位置制御	GCP-NAV	HPNAV
観測中の位置制御	GCP-NAV HPNAVによるホバリング	事前ム۷によるフリーモーション
観測時間	8時間	10時間程度
観測姿勢	+Z地球指向	スキャン運用を実施
運用コンセプト	高度を下げ、狙った地点を 狙ったアングルで観測する。 (着陸と同じ方法で精密誘導し ながら狙った地点に降りる)	ホバリングを維持しながら、高 度を下げる。(ホバリングと同じ 技術の延長でラフに高度を下 げる)

注:GCP-NAV (Ground Control Point Navigation)

→小惑星表面の特徴点を観測することで、探査機の位置・速度を求める手法

HPNAV (Home Position Navigation)

→小惑星の画像中心方向および探査機姿勢データより探査機の位置・速度を求める手法

5. ミッションスケジュール

※時刻は日本時間。運用計画や運用状況によって変更もありうる。

5.	ミッションスケジューノ	レ

年	月日	事項	状況
2018	1月10日	第3期イオンエンジン運転開始	済み
	6月 3日	イオンエンジン運転終了	済み
	6月 3日	小惑星接近誘導開始(距離3100km)	済み
	6月27日	小惑星到着(高度20km)	済み
	7月末	中高度降下運用1(高度5km)	予定
	8月	重力計測降下運用(高度1km)	予定
	8月下旬	着陸地点決定	予定
	9月~10月	タッチダウン運用スロット1	予定
	9月~10月	ローバ投下運用スロット1	予定
	11月~12月	合運用(通信不可の期間)	予定
2019	1月	中高度降下運用2(高度5km)	予定
	2月	タッチダウン運用スロット2	予定
	3月~4月	クレーター生成運用	予定
	4月~5月	タッチダウン運用スロット3	予定
	7月	ローバ投下運用スロット2	予定
	8月~11月	小惑星近傍滞在	予定
	11月~12月	小惑星出発	予定

このスケジュールは、リュウグウ到着後様々な要因で変更される可能性がある

6. 今後の予定

■メディアの方の取材、情報公開について:

・8月における記者説明会の予定:8月2日、8月23日

■アウトリーチ・イベント

- ➢ JAXA相模原キャンパス特別公開
 - ・7月27-28日、「はやぶさ2」のコーナーあり

▶ 子供向けイベント

- ・"なぜなに「はやぶさ2」何でも質問教室"
- •9月2日(日)14時~16時
- •相模原市立博物館
- ネット中継等も行う予定

探査機概要

中間赤外カメラ(TIR)

8~12µmでの撮像:小惑星表面温度を調べる

30m~25kmの範囲で、小惑星と探査機の間の距離を測定する

光学航法カメラ(ONC)

ONC: Optical Navigation Camera

<u>目的</u>:探査機誘導と科学計測のために 恒星と探査小惑星を撮像する。

<u>科学観測項目:</u>

- 探査小惑星形状・運動の観測
 直径、体積、慣性主軸方向、章動運動
- 表面地形の全球観測
 クレーター、構造地形、礫、レゴリス分布
- 表面物質の分光特性の全球観測 含水鉱物分布、有機物分布、宇宙風化度
- 試料採取地点付近の高解像度撮像 表面粒子の大きさ、形状、結合度、不均一性 サンプラー弾痕や接地痕の観測

NAGOYA UNIVERSITY **J∦X**A

- ・サンプル採取地点選定
 - 小惑星どこから試料採取す べきかの基本情報
- ・サンプルの産状把握
 - 試料採取地点の高分解能 の撮像

	ONC-T	ONC-W1	ONC-W2
検出器	二次元 Si-CCD	(1024 x 1024 ピクセル)	
視野方向	直下 (望遠)	直下 (広角)	側方 (広角)
視野角	6.35° × 6.35°	65.24° >	< 65.24°
焦点距離	100m~∞	1m~∞	
空間 分解能	1m/pix @高度10km 1cm/pix @高度100m	10m/pix @高度10km 1mm/pix @高度1m	
観測波長 390, 480, 550, 700, 860, 950, 589.5nm, お よび Wide		485nm~	∼655nm

中間赤外カメラ(TIR)

TIR=Thermal Infrared Imager

小惑星の表面温度は太陽に照らされる昼 間は上昇、夜間は低下するという日変化を する。

砂のように細粒の土質や、空隙の多い岩 石では表面温度の日変化は大きく、中身の 詰まった岩石は日変化が小さい。

小惑星からの熱放射の2次元撮像(サーモ グラフ)することによって、小惑星表面の物 理状態を調べる。

 ・検出器 ・観測波長 ・観測温度 ・相対温度精度 ・相対温度精度 ・相対異角 ・視野角 ・解像度 	2次元非冷却ボロメータ 8~12µm -40~150°C 0.3°C 328×248(有効) 16°×12° 20m(高度20km) 5cm(高度50m)
---	--

レーザ高度計(LIDAR)

LIDAR: LIght Detection And Ranging

- ・パルス方式のレーザ高度計。
- 対象天体に向けて波長1.064 µ mのパル スYAGレーザを発射し、レーザ光の往復 時間を測定することにより、高度を測定 する。
- 「はやぶさ2」のLIDARは、距離30m~
 25kmで測定することが可能である。
- ・LIDARは対象天体への接近、着陸時に用 いられる航法センサであるとともに、形状 測定、重力測定、表面特性測定、ダスト 観測に用いられる科学観測機器でもあ る。
- ・また、トランスポンダ機能も備えており、地 上 LIDAR 局との間で SLR(Space Laser Ranging)実験を行うことができる。

レーザ高度計エンジニアリングモデル

<u>科学目標</u>

- 探査小惑星の地形・重力場の観測
- 表面各地点のアルベド分布の観測
- •小惑星周囲に浮遊するダスト観測
- 小惑星の形状・質量・空隙率とその偏り
- ・小惑星表面のラフネス
- ・ダスト浮遊現象

近赤外分光計(NIRS3)

NIRS3: Near InfraRed Spectrometer ('3'は3 μ mより)

近赤外線領域の3µm帯の反射スペクト ルには水酸基や水分子の赤外吸収が 見られる。NIRS3では、3µm帯の反射ス ペクトルを測定することで、小惑星表面 の含水鉱物の分布を調べる。

- 観測波長範囲:1.8-3.2 µm
- 波長分解能 :20 nm
- 視野全角 :0.1°
- 空間分解能 :35 m(高度20km) 2 m(高度1km)
- 検出器温度 :-85℃~-70℃
- S/N比 :50以上(波長2.6µm)

