銀河団も太陽も化学組成は同じだった ~高温ガスが語る超新星爆発の歴史~

"Solar Abundance Ratios of the Iron-Peak Elements in the Perseus Cluster" (Hitomi Collaboration 2017)

2017年11月13日付で *Nature* 誌オンライン版に掲載 11月23日付で印刷版に掲載予定

論文の責任著者:

山口 弘悦(メリーランド大学 准教授) NASAゴダードスペースフライトセンター 研究員 兼務

松下恭子(東京理科大学教授)

ASTRO-H衛星プロジェクトサイエンティスト 大橋 隆哉 (首都大学東京 教授)

ポイント

- ・ASTRO-H搭載カロリメータ検出器で ペルセウス座銀河団を精密X線分光観測
- ・鉄属元素(クロム、マンガン、ニッケル) の元素量を初めて正確に測定
- 太陽の化学組成が現在の宇宙で普遍的で
 あることを示した
- ・Ia型超新星の性質に強い制限を与えた

Energy (observed) [keV]

Credit:JAXA/Ken Crawford (Rancho Del Sol Observatory)

X線天文衛星ASTRO-H(ひとみ)

搭載観測装置

JAXA主導で国際共同開発 (NASA, ESA他と協力)

- ・2016.2.17 打ち上げ
- ・2016.3.26 通信途絶
- ・2016.4.28 復旧運用断念

- + 軟X線望遠鏡(SXT)
- ・硬X線撮像検出器(HXI) +硬X線望遠鏡(HXT)
- ・軟ガンマ線検出器(SGD)

- ・*Nature*: 2編(昨年7月 + <u>今回</u>)
- ・Astrophysical Journal Letters: 1編
- ・日本天文学会 欧文研究報告誌: 2018年前半に ASTRO-H特集号を予定 (科学論文10編程度)

前回報告の成果: ペルセウス座銀河団の ガス運動について (2016年7月5日記者発表)

Hitomi collaboration 2016

銀河団

- ・100個以上の銀河の集団 ・宇宙で最大の天体(大きさ ~1 千万光年)
- ・ダークマターが作る重力ポテンシャルに 束縛された<mark>高温ガス</mark>(数千万~1億度)
- ・ガスの量は銀河(星)よりはるかに多い

80万光年

Fabian et al. (2011)

http://apod.nasa.gov/apod/ap090508.html by Jay Gabany

元素の起源2 コンパクト天体の合体

- ブラックホールとブラックホール
 - 重力波を放出して軌道が近づき、合体してブラックホールに
- 中性子星と中性子星
 - 重力波を放出して軌道が近づき、合体してブラックホールに
 - 金、プラチナなどのレアメタルを合成
- 白色矮星と白色矮星
 - 重力波を放出して軌道が近づき
 合体してla型超新星爆発
 - 鉄属元素を大量に合成
- 右図:中性子星合体とそれにより放出される 物質によってキロノバが起こる様子の 想像図(クレジット:国立天文台)

元素量測定の意義

- ・銀河団 = 宇宙最大の天体 (巨大な重力により束縛)
- ・銀河団ガス = 構成する銀河(星)の十倍以上
 - これまでに銀河の恒星で合成した元素を溜め込む

→ 現在の宇宙の平均的な化学組成とみなせる

- ・<u>太陽系の元素組成</u>と比較できる。
 = 惑星形成の鍵。普遍性は非自明。
 ・超新星爆発の平均的性質を明らかにできる。
- ・宇宙の化学進化史(元素合成史)につながる。 (多数の銀河団の観測が必要;今回は対象外)

銀河団の主要メンバーは 楕円銀河, SO銀河

天の川銀河は渦巻銀河 (星形成史が異なる)

画像はアンドロメダ銀河

Credit: Canada-France-Hawaii Telescope J.-C. Cuillandre (CFHT), Coelum Credit: Jason Ware

太陽系の組成が宇宙の平均である必然性は全くない 元素の組成比は、銀河の形態に依存するか? 元素の組成比⇒過去の恒星、超新星爆発の歴史

ASTRO-H衛星によるペルセウス座 銀河団のX線スペクトル

Credit:JAXA/Ken Crawford (Rancho Del Sol Observatory)

希少鉄族元素 (Cr, Mn, Ni) の検出

カロリメータの優れた分光能力により、単一天体で <u>初めて</u>これらの元素量を高精度で測定できるように

例えるなら…

従来の測定 (CCD)

鉄の塊

→ニッケルの塊

鉄ニッケル隕石中の ニッケルの量を測る → モデルを仮定

鉄とニッケルを分離し、 純粋なニッケルの 量を独立に測定

過去の Ni/Fe比測定(CCDの結果)

ここまでのまとめ

・銀河団ガスは宇宙の平均的な化学組成

銀河団の主要な銀河の形態は天の川とは違う

・太陽組成に完全一致(<u>鉄属元素</u>では初)

→太陽の化学組成は普遍的!

Si, S, Ar, Ca: 主に重力崩壊型超新星から

鉄属元素:何が重要か

→ Ia型(核燃焼型)超新星が主要生成源

= "宇宙の標準光源"・距離測定の指標

→ 宇宙の加速膨張を発見(2011年ノーベル物理学賞)

SN1994D (NGC 4526の超新星)

天の川銀河系内の Ia型超新星残骸

Credit: NASA/ESA/JHU/R. Sankrit & W. Blair

ケプラーの超新星残骸(1604年に爆発)

Ia型超新星 = 白色矮星の爆発 標準的な恒星(M ≤ 6M_☉)の成れの果て

Ia型超新星にまつわる問題 そんなに単純でもなさそう

常に限界質量で爆発? より軽い質量での爆発? 伴星からの質量降着 e.g., 白色矮星の合体 爆発時の質量を制限できるのが **鉄属元素の組成**

限界質量白色矮星の爆発 (Seitenzahl+13)

銀河団中の鉄属元素

- ・限界質量での爆発 とより軽い質量での爆 発の寄与率を宇宙スケールで制限できる。
 - ・銀河のタイプ(星形成率など)に依存?

→ 宇宙論にとっても重要なテーマ

 過去の銀河団観測 = 高い Ni/Fe, Mn/Fe 比
 → Ia型超新星の性質は太陽近傍と異なる?
 事実であれば重大な問題。しかし従来の観測は 分光能力が足りなかった (p.14–17参照)。

ASTRO-Hの結果が意味するところ

超新星元素合成モデルとの比較

両方のla型超新星からの寄与を示唆 (1:1程度)

まとめ

- ・ASTRO-H衛星によりペルセウス座銀河団の 高温ガスの重元素組成を高い精度で測定 (初の精密X線分光)
- ・銀河団ガス中のケイ素、硫黄、アルゴン、カルシウム 鉄属元素(クロム、マンガン、鉄、ニッケル)
 の組成比は太陽組成に完全一致
 →太陽の化学組成は普遍的
- ・Ia型超新星(鉄属元素の主要生成源)の 爆発時の質量分布は母銀河の性質によらず、 限界質量と、より軽い質量での爆発の両方が 存在する可能性を示唆

→ 今後の系統観測が重要

ASTRO-H衛星の開発、観測計画の立案

Hitomi collaborationメンバー

マイクロカロリメータ検出器の開発、較正 SXSチームメンバー

軟X線望遠鏡の開発、較正

SXTチームメンバー

データ解析、議論、論文の執筆

山口弘悦(メリーランド大学)、中島真也(理化学研究所)、

A.Simionescu(ISAS)、E.Bulbul(MIT、CfA)

M. Loewenstein (メリーランド大学)、

松下恭子(東京理科大学)、佐藤浩介(東京理科大学、埼玉大学)、 R. Mushotzky(メリーランド大学)

輝線幅からガスの乱流速度を測定

ガスの運動が静かなほど輝線幅は小さい

ガスの運動は予想外に静かだった 米国の天文衛星 Chandra による ペルセウス座銀河団中心のX線画像

複雑な構造からは 激しいガス運動が 予想されていた

Sanders et al. (2016)

なぜ?

電子捕獲: **p + e → n + v**e (~M_{Ch} のときだけ起こる)

Ia型超新星の元素合成

超新星残骸における M_{Ch} SN Ia の証拠

Ni/Fe ≈ 0.17 (0.12–0.24) Mn/Fe ≈ 0.025 (0.018-0.033)

→ 電子捕獲が必要

従来(CCD)の銀河団研究

・CrやMnの検出は限定的 (Tamura+09, Mernier+16)

・強い輝線(O/Si/Fe)から SN Ia/cc比の導出(Sato+07)

Importance of SNe Ia

"Standard candle" for cosmology

Discovery of the accelerating universe (2011 Nobel Prize)